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Statistical Methods in Clinical Trials 
0. Introduction 
0.1 Books 

Altman, D.G. (1991) Practical Statistics for Medical Research. Chapman 
& Hall 
Andersen, B. (1990) Methodological Errors in Medical Research. 
Blackwell 
Armitage, P., Berry, G. &  Matthews, J.N.S. (2002) Statistical Methods in 
Medical Research (4th Ed.). Blackwell. 
Bland, Martin (2000) An Introduction to Medical Statistics (3rd Ed). OUP. 
Campbell, M. J. & Swainscow, T. D. V. (2009) Statistics at Square One 
(11th Ed). Wiley-Blackwell 
Campbell, M. J. (2006) Statistics at Square Two (2nd Ed). Wiley-
Blackwell 
† Julious, S. A. (2010) Sample Sizes for Clinical Trials, CRC Press. 
Kirkwood, B. R. & Stone, J.A.C. (2003) Medical Statistics (2nd Ed). 
Blackwell  
Campbell, M. J., Machin, D. & Walters, S. (2007) Medical Statistics: a 
textbook for the health sciences. (4th Ed.) Wiley  
Machin, D. & Campbell, M. J. (1997) Statistical Tables for the Design of 
Clinical Trials. (2nd Ed.) Wiley 
Matthews, J. N. S. (2006), An Introduction to Randomized 
Controlled Clinical Trials. (2nd Ed.) Chapman & Hall 
Pocock, S. J. (1983) Clinical Trials, A Practical Approach. Wiley 
Schumacher, Martin & Schulgen, Gabi  (2002) Methodik Klinischer 
Studien. Springer. (In German) 
Senn, Stephen (2002) Cross-over Trials in Clinical Research. Wiley 
 Senn, Stephen (2003) Dicing with Death: Chance, Risk & Health. 
CUP 
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The two texts which are highlighted cover most of the Clinical Trials 

section of the Medical Statistics module; the first also has material 

relevant to the Survival Data Analysis section. 

† Indicates a book which goes considerably further than is required for 

this course (Chapter 5) but is also highly relevant for those taking the 

second semester course MAS6062 Further Clinical Trials. 

 Indicates a book which contains much material that is relevant to this 

course but it is primarily a book about Medical Statistics and is strongly 

recommended to those planning to go for interviews for jobs in the 

biomedical areas (including the pharmaceutical industry)  

 

0.2 Objectives 

The objective of this course is to provide an introduction to some of the 

statistical methods and statistical issues that arise in medical 

experiments which involve, in particular, human patients. Such 

experiments are known collectively as clinical trials.  

Many of the statistical techniques used in analyzing data from such 

experiments are widely used in many other areas (e.g. 2-tests in 

contingency tables, t-tests, analysis of variance). Others which arise 

particularly in medical data and which are mentioned in this course are 

McNemar’s test, the Mantel-Haenszel test, logistic regression and the 

analysis of crossover trails. 

As well as techniques of statistical analysis, the course considers some 

other issues which arise in medical statistics — questions of ethics and 

of the design of clinical trials. 
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0.3 Organization of course material 

The notes in the main Chapters 1 – 7 are largely covered in the two 

highlighted books in the list of recommended texts above and are 

supplemented by various examples and illustrations. These range from 

simple ‘quick problems’ to more substantial exercises. These task 

sheets are designed for you to test your own understanding of the 

course material.  If you are not able to complete the simpler problems 

then you should go back to the lecture notes (and other course material) 

and re-read the relevant section (and if necessary re-read again & …). 

Solutions will be provided to these on the course web pages in due 

course. 
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Lectures will consist of introducing the material covered in these notes, 

filling in details of items such as R implementation (including specific 

commands and menu choices), demonstrating computer analyses and 

going through key parts of the various example sheets. The lectures will 

be based on PowerPoint presentations and copies of the slides will be 

made available on the course webpage at: 

http://www.nickfieller.staff.shef.ac.uk/tampere12/index.html   

These will be placed there at some time after the lecture. Any typing (or 

other) mistakes in the notes or the exercises and solutions that are 

brought to my attention will be noted and corrected in a Corrections 

and Clarifications section on this page.  

 

The lectures will not necessarily follow precisely what appears in the 

notes. In some places the lecture slides will follow the notes very closely, 

repeating some of the examples. In other places the slides will present 

material in a slightly different way and possible different order and there 

will be examples and further details in the lectures than are covered in 

these notes. 

0.4 A Note on R, S-PLUS and MINITAB 
The main statistical package for this course is R.  It is very similar to the 

copyright package S-PLUS and the command line commands of S-PLUS 

are [almost] interchangeable with those of R. Unlike S-PLUS, R has only 

a very limited menu system which covers some operational aspect but 

no statistical analyses.  A brief guide to getting started in R is available 

from the course homepage.  

R is a freely available programme which can be downloaded over the 

web from http://cran.r-project.org/ or any of the mirror sites linked from 
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there for installation on your own machine. It is available on University 

networks. R and S-PLUS are almost identical except that R can only be 

operated from the command line apart from operational aspects such as 

loading libraries and opening files.  Almost all commands and functions 

used in one package will work in the other. However, there are some 

differences between them. In particular, there are some options and 

parameters available in R functions which are not available in S-PLUS. 

Both S-PLUS and R have excellent help systems and a quick check with 

help(function) will pinpoint any differences that are causing difficulties.  A 

key advantage of R over S-PLUS is the large number of libraries 

contributed by users to perform many sophisticated analyses.   

These are updated very frequently and extend the capabilities 

substantially.  If you are considering using the techniques outside this 

course (e.g. for some other substantial project) then you would be well 

advised to use R in preference to S-PLUS. Command-line codes for the 

more substantial analyses given in the notes for this course have been 

tested in R.  In general, they will work in S-PLUS as well but there could 

be some minor difficulties which are easily resolved using the help 

system.  

MINITAB is package with a very flexible menu system and a full 

command-line facility. Some examples of MINITAB code and output are 

given in the notes since some of those taking the course are already 

familiar with the package.  
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0.5 Data sets 
Data sets used in this course are available on the course web pages in 

R format. Other formats for some data sets may be available by direct 

request  
 

0.5.1 R data sets 
Those in R are given first and they have extensions .Rdata; to use them 

it is necessary to copy them to your own hard disk. This is done by using 

a web browser to navigate to the course web, clicking with the right-hand 

button and selecting ‘save target as…’ or similar which opens a dialog 

box for you to specify which folder to save them to.  Keeping the default 

.Rdata extension is recommended and then if you use Windows explorer 

to locate the file a double click on it will open R with the data set loaded 

and it will change the working directory to the folder where the file is 

located.  For convenience all the R data sets for Medical Statistics are 

also given in a WinZip file. 

NOTE: It may not be possible to use a web browser to locate the 

data set on a web server and then open R by double clicking. The 

reason is that you only have read access rights to the web page and 

since R changes the working directory to the folder containing the data 

set write access is required. 
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0.5.2 Data sets in other formats 
Most of the data sets are available in other formats (Minitab, SPSS etc) 

on request.   

 

0.6 R libraries required  
Most of the statistical analyses described in this booklet use standard 

functions but some may require use of the MASS package and others. 

This will be indicated on each occasion. 

The MASS library is installed with the base system of R but you may 

need to install other packages before first usage. 
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0.6 Outline of Course 

1. Background:– historical development of statistics in medical 

experiments. Basic definitions of placebo effect, blindness and 

phases of clinical trial. 

2. Basic trial analysis:– ‘parallel group’ and ‘in series’ designs, factorial 

designs & sequential designs. 

3. Randomization:– simple and restricted, stratified, objectives of 

randomization. 

4. Size of trial:– sample sizes needed to detect clinically relevant 

differences with specified power. 

5. Multiplicity and interim analyses:– multiple significance testing and 

subgroup analysis, Bonferroni corrections. 

6. Crossover trials:– estimation and testing for treatment, period and 

carryover effects. 

7. Binary responses:– matched pairs and McNemar’s test, logistic 

regression. 
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1. Background and Basic Concepts 
1.1 Definition of Clinical Trial (from Pocock, 1983) 

Any form of planned experiment which involves 

patients and is designed to elucidate the most 

appropriate treatment of future patients under a given 

medical condition 

Notes: 

(i) Planned experiment (not observational study) 

(ii) Inferential Procedure — want to use results on limited sample 

of patients to find out best treatment in the general 

population of patients who will require treatment in the future. 
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1.2 Historical Background  

(see e.g. Pocock Ch. 2, Matthews Ch. 1) 

1537: Treatment of battle wounds: 

Treatment A: Boiling Oil [standard] 

Treatment B: Egg yolk + Turpentine + Oil of Roses [new] 

 New treatment found to be better 

1741: Treatment of Scurvy, HMS Edinburgh: 

Two patients allocated to each of (1) cider; (2) elixi vitriol;   

(3) vinegar; (4) nutmeg, (5) sea water; (6) oranges & lemons 

(6) produced “the most sudden and visible good effects.” 

Prior to 1950s medicine developed in a haphazard way. Medical 

literature emphasized individual case studies and treatment was 

copied:— unscientific & inefficient. 

 

Some advances were made (chiefly in communicable diseases) perhaps 

because the improvements could not be masked by poor procedure. 

Incorporation of statistical techniques is more recent. 

e.g. MRC (Medical Research Council in the UK) Streptomycin trial for 

Tuberculosis (1948) was first to use a randomized control. 

 MRC cancer trials (with statistician Austin Bradford-Hill) first 

recognizably modern sequence — laid down the [now] standard 

procedure. 
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1.3 Field Trial of Salk Polio Vaccine 
In 1954 1.8 million young children in the U.S. were in a trial to assess 

the effectiveness of Salk vaccine in preventing paralysis/death from 

polio (which affected 1 in 2000). 

 

Certain areas of the U.S., Canada and Finland were chosen and the 

vaccine offered to all 2nd grade children. Untreated 1st and 3rd grade 

children used as the control group, a total of 1 million in all. 

Difficulties in this ‘observed control’ approach were anticipated: 

(a) only volunteers could be used – these tended to be from 

wealthier/better educated background (i.e. volunteer bias) 

(b) doctors knew which children had received the vaccine and this 

could (subconsciously) have influenced their more difficult 

diagnoses (i.e. a problem of lack of blindness) 

Hence a further 0.8 million took part in a randomised double-blind trial 

simultaneously. Every child received an injection but half these did not 

contain vaccine: 

       vaccine 

  random assignment 

       placebo (dummy treatment) 

and child/parent/evaluating physician did not know which. 

 Statistics in Clinical Trials; Chapter 1:– Background 
 

NRJF, University of Sheffield, 16–27 April 2012 12  
 

Results of Field Trial of Salk Polio Vaccine 
 

Study group  
Number 

in group 

Number 

of cases 

Rate per 

100 000 

Observed control    

Vaccinated 2nd grade 221 998  38 17 
Control 1st and 3rd grade 725 173 330 46 
Unvaccinated 2nd grade 123 605   43 35 

Randomized control    

Vaccinated 200 745  33 16 
Control 210 229 115 57 
Not inoculated 338 778 121 36 

 

Results from second part conclusive: 

(a) incidence in vaccine group reduced by 50% 

(b) paralysis from those getting polio 70% less 

(c) no deaths in vaccine group (compared with 4 in placebo group) 
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Results from first part less so – it was noticed that those 2nd grade 

children NOT agreeing to vaccination had lower incidence than non-

vaccinated controls. It could be that: 

 

(a) those 2nd grade children having vaccine are a self-selected 

high risk group 

 or 

(b) that there is a complex age effect 

 

Whatever the cause, a valid comparison (treated versus control) was 

difficult. This provides an example of volunteer bias. 

 

Thus, this study was [by accident] a comparison between a randomized 

controlled double-blind clinical trial and a non-randomized open trial. It 

revealed the superiority of randomised trials which are now regarded as 

essential to the definitive comparison and evaluation of medical 

treatments, just as they had been in other contexts (e.g. agricultural 

trials) since ~1900. 
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1.4 Types of Trial 
 Typically a new treatment develops through a research 

programme (at a pharmaceutical company) who test MANY different 

manufactured/synthesized compounds. Approximately 1 in 10,000 of 

those synthesized get to a clinical trial stage (initial pre-clinical screening 

through chemical analysis, preliminary animal testing etc.). Of these, 1 in 

5 reaches marketing. 

 

The 4 stages of a [clinical] trial programme after the pre-clinical are:– 

Phase I trials: Clinical pharmacology & toxicity concerned with drug 

safety — not efficacy (i.e. not with whether it is 

effective). Performed on non-patients  or volunteers.  

Aim to find range of safe and effective doses. 

investigate metabolism of drugs.  

n=10 – 50 

Phase II trials: Initial clinical investigation for treatment effect. Concerned 

with safety & efficacy for patients. Find maximum 

effective and tolerated doses. Develop model for 

metabolism of drug in time.  

n= 50 –100 

Phase III trials: Full-scale evaluation of treatment comparison of drug 

versus control/standard in (large) trial:  

n= 100 – 1000 

Phase IV trials: Post-marketing surveillance: long-term studies of side 

effects, morbidity & mortality.  

n= as many as possible 
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1.4.1 Further notes: 

Phase I: First objective is to determine an acceptable single drug 

dosage, i.e. how much drug can be given without causing 

serious side effects — such information is often obtained 

from dosage experiments where a volunteer is given 

increasing doses of the drug rather than a pre-determined 

schedule. 

Phase II: Small scale and require detailed monitoring of each patient. 

Phase III: After a drug has been shown to have some reasonable effect 

it is necessary to show that it is better than the current 

standard treatment for the same condition in a large trial 

involving a substantial number of patients. (‘Standard’:  drug 

already on market, want new drug to be at least equally as 

good so as to get a share of the market). Generally these will 

be superiority trials designed to test whether the new 

treatment is superior to another. However, there are other 

possibilities: non-inferiority trials (to test whether a new 

treatment is no worse [within a specified margin] than 

another and bioequivalence trials (to test whether a new 

treatment is equivalent in effect [within specified margins] to 

another).  This course is concerned with superiority trials 

only. 
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Note: Almost all [Phase III] trials now are randomized controlled 

(comparative) studies: 

     group receiving new drug 

comparative studies 

     group receiving standard drug 

 

 

 To avoid bias (subconscious or otherwise), patients must be 

assigned at random.  

 (Bias:– May give very ill people the new drug since there is no chance 

of standard drug working or perhaps because there is more chance of 

them showing greater improvement, e.g. blood pressure — those with 

the highest blood pressure levels  can show a greater change than 

those with moderately high levels). 

 

The comparative effect is important. If we do not have a control group 

and simply give a new treatment to patients, we cannot say whether any 

improvement is due to the drug or just to the act of being treated (i.e. the 

placebo effect). Historical controls (i.e. look for records from past years 

of people with similar condition when they came for treatment) suffer 

from similar problems since medical care by doctors and nurses 

improves generally. 
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In an early study of the validity of controlled and uncontrolled trials, 

Foulds (1958) examined reports of psychiatric clinical trials: 

 in 52 uncontrolled trials, treatment was declared ‘successful’ 

in in 43 cases (83%) 

 in 20 controlled trials, treatment was ‘successful’ in only 5 

cases (25%) 

This is SUSPICIOUS. 

Beware also of publication bias:– only publish ‘results’ that say new 

drug is better, when other studies disagree. Also concern from conflicts 

of interest — see §1.8 Publication Ethics.  

There is also concern that pressures of publication will influence what is 

published from a trial, e.g. what is declared to be the primary response 

may show little effect and instead some different measure is chosen, 

evidence suggests this happens in about a third of published trials 

[Mathieu, S. et al., 2009. Comparison of Registered and Published 

Primary Outcomes in Randomized Controlled Trials. JAMA, 302(9), 977-

984] and indeed fewer than half of registered trials recorded what the 

primary outcome was.  

The sources of information for this study are registers of clinical trials 

such as http://clinicaltrials.gov/ and PubMed  

(http://www.ncbi.nlm.nih.gov/sites/entrez/).  However, not all trials are 

registered though In 2005, the International Committee of Medical 

Journal Editors announced they would only publish trials that had been 

registered. Nevertheless Only 20% of all cancer trials are published 

http://theoncologist.alphamedpress.org/cgi/content/abstract/theoncologis

t.2008-0133v1 (The Oncologist, 15 September 2008) and only 6% of 

cancer trials run by commercial industry are published 
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1.5 Placebo Effect 
One type of control is a placebo or dummy treatment. This is 

necessary to counter the placebo effect — the psychological 

benefit of being given any treatment/attention at all (used in a 

comparative study) 

 

 

1.6 Blindness of trials 
Using placebos allows the opportunity to make a trial double blind 

— i.e. neither the patient nor the doctor knows which treatment 

was received. This avoids bias from patient or evaluator attitudes. 

 

Single blind — either patient or evaluator blind 

 

In organizing such a trial there is a coded list which records each 

patient’s treatment. This is held by a co-ordinator & only broken at 

analysis (or in emergency). 

 

Clearly, blind trials are only sometimes possible; e.g. cannot 

compare a drug treatment with a surgical treatment. 
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1.7 Ethical Considerations 
Specified in Declaration of Helsinki (1964+ammendments) 

consisting of 32 paragraphs, see http://www.wma.net/e/policy/b3.htm. 

 Ethical considerations can be different from what the 

statistician would like. 

 e.g. some doctors do not like placebos — they see it as 

preventing a possibly beneficial treatment. (¿How can you give 

somebody a treatment that you know will not work?).  Paragraph 

29 and the 2002 Note of Clarification concerns use of 

placebo-controlled trials. 

 

There is competition between individual and collective ethics — 

what may be good for a single individual may not be good for the 

whole population. 
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It is agreed that it is unethical to conduct research which is badly 

planned or executed. We should only put patients in a trial to 

compare treatment A with treatment B if we are genuinely unsure 

whether A or B is better. 

 

An important feature is that patients must give their consent to be 

entered (at least generally) and more than this, they must give 

informed consent (i.e. they should know what the consequences 

are of taking the possible treatments). 

 

In the UK, local ethics committees monitor and ‘licence’ all clinical 

trials — e.g. in each hospital or in each city or regional area. 

 

It is also unethical to perform a trial which has little prospect of 

reaching any conclusion, e.g. because of insufficient numbers of 

subjects — see later — or some other aspect of poor design.  

It may also be unethical to perform a trial which has many more  

subjects than are needed to reach a conclusion, e.g in a 

comparative trial if one treatment proves to be far superior then too 

many may have received the inferior one. 
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1.8 Publication Ethics 
See BMJ Vol 323, p588, 15/09/01. (http://www.bmj.com/) 

Editorial published in all journals that are members of the 

International Committee of Medical Journal Editors (BMJ, Lancet, 

New England Journal of Medicne, … ). 

 

Concern at articles where declared authors have  

 not participated in design of study 

 had no access to raw data 

 little role in interpretation of data 

 not had ultimate control over whether study is published 

Instead, the sponsors of the study (e.g. pharmaceutical company) 

have designed, analysed and interpreted the study (and then 

decided to publish). 

A survey of 3300 academics in 50 universities revealed 20% had 

had publication delayed by at least 6 months at least once in the 

past 3 years because of pressure from the sponsors of their study. 

Contributors must now sign to declare: 

 full responsibility for conduct of study 

 had access to data 

 controlled decision to publish 
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1.9 Evidence-Based Medicine 
This course is concerned with ‘Evidence-Based Medicine (EBM) or 

more widely ‘Evidence-Based Health Care’. The essence of EBM 

is that we should consider critically all evidence that a drug is 

effective or that a particular course of treatment improves some 

relevant measure of well-being or that some environmental factor 

causes some condition.  Unlike abstract areas of mathematics it is 

never possible to prove that a drug is effective, it is only possible 

to assess the strength of the evidence that it is. In this framework 

statistical methodology has a role but not an exclusive one. A 

formal test of a hypothesis that a drug has no effect can assess 

the strength of the evidence against this null hypothesis but it will 

never be able to prove that it has no effect, nor that it is effective. 

The statistical test can only add to the overall evidence. 

 

 

 

1.9.1 The Bradford-Hill Criteria 
To help answer the specific question of causality Austen 

Bradford-Hill (1965) formulated a set of criteria that could be used 

to assess whether a particular agent (e.g. a medication or drug or 

treatment regime or exposure to an environmental factor) caused 

or influenced a particular outcome (e.g. cure of disease, reduction 

in pain, medical condition) 

These are:– 
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 Temporality (effect follows cause) 

 Consistency (does it happen in different groups of people – 

both men and women, different countries) 

 Coherence (do different types of study result in similar 

conclusions – controlled trials and observational studies)  

 Strength of association (the greater the effect compared with 

those not exposed to the agent the more plausible is the 

association) 

 Biological gradient (the stronger the agent the greater the 

effect – does response follow dose) 

 Specificity (does agent specifically affect something directly 

connected with the agent) 

 Plausibility (is there a possible biological mechanism that 

could explain the effect) 

 Freedom from bias or confounding factors (a confounding 

factor is something related to both the agent and the 

outcome but is not in itself a cause) 

 Analogous results found elsewhere (do similar agents have 

similar results) 

These 9 criteria are of course inter-related. Bradford-Hill comments 

“none of my nine viewpoints can bring indisputable evidence for or 

against the cause-and-effect hypothesis and none can be 

regarded as a sine qua non’, that is establishing every one of 

these does not prove cause and effect nor does failure to establish 

any of them mean that the hypothesis of cause and effect is 

completely untrue.  However, satisfying most of them does add 

considerably to the evidence. 
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1.10 Summary & Conclusions 

 Clinical trials involve human patients and are planned 

experiments from which wider inferences are to be 

drawn 

 Randomized controlled trials are the only effective type 

of clinical trial 

 Clinical Trials can be categorized into 4 phases 

 Double or single blind trials are preferable where 

possible to reduce bias 

 Placebo effects can be assessed by controls with 

placebo or dummy treatments where feasible. 

 Ethical considerations are part of the statisticians 

responsibility 
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2. Basic Trial Analysis 
2.1 Comments on Tests 

Before considering some basic experimental designs used 

commonly in the analysis of Clinical Trials there are two comments 

on statistical tests. The first is on the general question of whether 

to use a one- or two-sided tests, the other is when considering use 

of a t-test whether to use the separate or pooled version and what 

about testing for equality of variance first? 

2.1.1 One-sided and two-sided tests 
Tests are usually two-sided unless there are very good prior 

reasons, not observation or data based, for making the test 

one-sided. If in doubt, then use a two-sided test.   

This is particularly contentious amongst some clinicians who say:–  

“I know this drug can only possibly lower mean systolic 

blood pressure so I must use a one-sided test of 

H0:  = 0 vs HA:  < 0 to test whether this drug 

works.”  

The temptation to use a one-sided test is that it is more powerful 

for a given significance level (i.e. you are more likely to obtain a 

significant result, i.e. more likely to ‘shew’ your drug works). The 

reason why you should not is because if the drug actually 

increased mean systolic blood pressure but you had declared you 

were using a one-sided test for lower alternatives then the rules of 

the game would declare that you should ignore this evidence and 

so fail to detect that the drug is in fact deleterious.   
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One pragmatic reason for always using two-sided tests is that all 

good editors of medical journals would almost certainly refuse to 

publish articles based on use of one-sided tests, (or at the very 

least question their use and want to be assured that the use of 

one-sided tests had been declared in the protocol [see §4] in 

advance (with certified documentary evidence).  

A more difficult example is suppose there is suspicion that a 

supplier is adulterating milk with water. The freezing temperature 

of watered-down milk is lower than that of whole milk. If you test 

the suspicions by measuring the freezing temperatures of several 

samples of the milk, should a one- or two-sided test be used? To 

answer the very specific question of whether the milk is being 

adulterated by water you should use a one-sided test but what if in 

fact the supplier is adding cream? 

In passing, it might be noted that the issue of one-sided and 

two-sided tests only arises in tests relating to one or two 

parameters in only one dimension.  With more than one dimension 

(or hypotheses relating to more than two parameters) there is no 

parallel of one-sided alternative hypotheses. This illustrates the 

rather artificial nature of one-sided tests in general.  

Situations where a one-sided test is definitely called for are 

uncommon but one example is in a case of say two drugs A (the 

current standard and very expensive) and B (a new generic drug 

which is much cheaper).  Then there might be a proposal that the 

new cheaper drug should be introduced unless there is evidence 

that it is very much worse than the standard.   In this case the 

model might have the mean response to the two drugs as A = B 

and if low values are ‘bad’, high values ‘good’ then one might test 

H0: A = B against the one-sided alternative HA: A > B and drug 
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B is introduced if H0 is not rejected.  The reason here is that you 

want to avoid introducing the new drug if there is even weak 

evidence that it is worse but if it is indeed preferable then so much 

the better, you are using as powerful a test as you can (i.e. 

one-sided rather than the weaker two-sided version). However, 

this example does raise further issues such as how big a sample 

should you use and so on.  The difficulty here is that you will 

proceed provided there is absence of evidence saying that you 

should not do so. A better way of assessing the drug would be to 

say that you will introduce drug B only if you can shew that it is no 

more than K units worse than drug A. So you would test  

H0: A – K = B against HA: A – K < B and only proceed with the 

introduction of B if H0 is rejected in favour of the one-sided 

alternative (of course you need good medical knowledge to 

determine a sensible value of K). This leads into the area of 

non-inferiority trials and bioequivalence studies which are beyond 

the scope of this course but will be considered in the second 

semester course MAS6062 Further Clinical Trials. 

 

2.1.2 Separate and Pooled Variance t-tests 
This is a quick reminder of some issues relating to two-sample 

t-tests. The test statistic is the difference in sample means scaled 

by an estimate of the standard deviation of that difference. There 

are two plausible ways of estimating the variance of that 

difference. The first is by estimating the variance of each sample 

separately and then combining the two separate estimates. The 

other is to pool all the data from the two samples and estimate a 

common variance (allowing for the potential difference in means).  

The standard deviation used in the test statistic is then the square 
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root of this estimate of variance. To be specific, if we have groups 

of sizes n1 and n2, means 1x  & 2x  and sample variances 2
1s  & 2

2s  

of the two samples then the two versions of a 2-sample t-test are: 

(i) separate variance: r
s s
n n

x xt 



2 2
1 2

1 2

1 2 , where the degrees of 

freedom r is safely taken as min{n1,n2} though S-PLUS, 

MINITAB and SPSS use a more complicated formula (the 

Welch approximation) which results in fractional degrees of 

freedom. This is the default version in R (with function 

t.test() and MINITAB but not in many other packages such 

as S-PLUS. 

(ii) pooled variance: 
 

r
(n )s (n )s

n n n n

x xt
  

 





2 2

1 1 2 2

1 2 1 2

1 2

1 1 1 1
2

  

  where r = (n1+n2 – 2).  

This version assumes that the variances of the two samples 

are equal (though this is difficult to test with small amounts of 

data).  This is the default version in S-PLUS. 

 

We will primarily use the first version because if the underlying 

populations variances are indeed the same then the separate 

variance estimate is a good [unbiased] estimate of the common 

variance and the null distribution of the separate variance estimate 

test statistic is a t-distribution with only slightly more degrees of 

freedom than given by the Welch approximation in the statistical 

packages so resulting in a test that is very slightly conservative 

and very slightly less powerful. However, if you use the pooled 

variance estimate when the underlying population variances are 

unequal then the resulting test statistic has a null distribution that 
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can be a long way from a t-distribution on (n1+n2–2) degrees of 

freedom and so potentially produce wrong results (neither 

generally conservative nor liberal, neither generally more nor less 

powerful, just incorrect).  Thus it makes sense to use the separate 

variance estimate routinely unless there are very good reasons to 

do otherwise.   One such exceptional case is in the calculation of 

sample sizes [see §5.3] where a pooled variance is used entirely 

for pragmatic reasons and because many approximations are 

necessary to obtain any answer at all and this one is not so 

serious as other assumptions made.  

The use of a separate variance based test statistic is only possible 

since the Welch approximation gives such an accurate estimate of 

the null distribution of the test statistic and this is only the case in 

two sample univariate tests. In two-sample multivariate tests or in 

all multi-sample tests (analysis of variance such as ANOVA and 

MANOVA) there is no available approximation and a pooled 

variance estimate has to be used. 

 

2.1.2.1 Test equality of variances? 
It is natural to consider conducting a preliminary test of equality of 

variances and then on the basis of the outcome of that decide 

whether to use a pooled or a separate variance estimate. In fact 

SPSS automatically gives the results of such a test (Levene’s Test 

— a common alternative would be Bartlett’s) as well as both 

versions of the two-sample t-test with two p-values, inviting you to 

choose. The arguments against using such a  preliminary test are 

(a) tests of equality of variance are very low powered without large 

quantities of data — appreciate that a non-significant result does 

not mean that the variances truly are equal only that the evidence 

 Statistics in Clinical Trials; Chapter 2: Basic Trial Analysis 
 

NRJF, University of Sheffield, 16–27 April 2012 30  
 

for them being different is weak (b) a technical reason that if the 

form of the t-test is chosen on the basis of a preliminary test using 

the same data then allowance needs to be made for the 

conditioning of the t-test distribution on the preliminary test, i.e. the 

apparent significance level from the second test  (– the t-test) is 

wrong because it does not allow for the result of the first (–  test of 

equality of variance).   You should definitely not do both tests and 

choose the one with the smaller p-value [data snooping], which is 

the temptation from SPSS. In practice the values of the test 

statistics are usually very close but the p-values differ slightly 

(because of using a different value for the degrees of freedom in 

the reference t-distribution). In cases where there is a substantial 

difference then the ‘separate variance’ version is always the 

correct one. 

Thus the general rule is ‘always use a separate variance test’ 

noting that in S-PLUS the default needs to be changed. 
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2.2 Parallel Group Designs 
 Compare k treatments by dividing patients at random into k groups 

— the ni patients in group i receive treatment i.  

      Group 

    1 2 3 . . . . . . . . . .   k 

    X X X . . . . . . . . . .  X 

    X X X . . . . . . . . . .  X 

    • • •    • 

    X • •    • 

     X •    X 

      •     

      X     .     

Number in group:- n1 n2 n3 . . . . . . . . . . .  nk  ni= 

N 

EACH PATIENT RECEIVES 1 TREATMENT 

Often ni=n with nk=N (i.e. groups the same size),  

but not necessarily, e.g. 

  treatment 1 = placebo;  n1 = 10 

  treatment 2 = drug A;  n2 = 20 

  treatment 3 = drug B;  n3 = 20 

with difference between A & B of most interest and ‘hopefully’ 

differences between drug and placebo will be ‘large’. 
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Note: Comparisons are ‘between’ patients 

 

 

    Possible analyses: 

   2 groups   >2 groups 

Normal data: t-test    1-way ANOVA 

Non-parametric: Mann-Whitney  Kruskal-Wallis 

2.3 In series designs 
Here each patient receives all k treatments in the same order 

      Treatment 

    1   2   3   . . . . . . . . . .  k 

   1 X   X   X . . . . . . . . . .  X 

   2 X   X   X . . . . . . . . . .  X 

   • • • •    • 

 patient • • • •    • 

   • • • •    • 

   • • • •    • 

   n X   X   X . . . . . . . . . .  X      

 

Problem: Patients are more likely to enter the trial when their disease is 

most noticeable, and hence more severe than usual, so 

there is a realistic chance of a trend towards improvement 

while on trial regardless of therapy,  

i.e. the later treatments may appear to be better than the 

earlier ones. 
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In most cases, patients differ greatly in their response to any treatment 

and in their initial disease state. So large numbers are needed in parallel 

group studies if treatment effects are to be detected. 

 

 However there is much less variability between measurements 

taken on the same patient at different times. Comparisons here are 

‘within’ patients. 

Advantages: 

1. Patients can state ‘preferences’ between treatments 

2. Might be able to allocate treatments simultaneously e.g. skin 

cream on left and right hands 

 

Disadvantages 

1. Treatment effect might depend on when it is given 

2. Treatment effect may persist into subsequent periods and mask 

effects of later treatments. 

3. Withdrawals cause problems   

 (i.e. if a patient leaves before trying all treatments) 

4. Not universally applicable,  

  e.g. drug treatment compared with surgery 

5. Can only use for short term effects 

 

    Possible analyses: 

   2 groups   >2 groups 

Normal data: paired t-test  2-way ANOVA 
   (on differences) 

Non-parametric: Wilcoxon signed  Friedman’s test 
   rank test 

 

 Statistics in Clinical Trials; Chapter 2: Basic Trial Analysis 
 

NRJF, University of Sheffield, 16–27 April 2012 34  
 

2.3.1 Crossover Design 

Problems with ‘period’ or ‘carryover’ or ‘order’ can be overcome by 

suitable design; e.g. crossover design. Here patients receive all 

treatments, but not necessarily in the same order. If patients 

crossover from one treatment to another there may be problems of 

feasibility and reliability.  

For example, is the disease sufficiently stable and is patient co-

operation good enough to ensure that all patients will complete the 

full course of treatments? A large number of dropouts after the first 

treatment period makes the crossover design of little value and it 

might be better to use a between-patient analysis (i.e. parallel 

group) analysis of the results for period 1 only. 
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Example 1 (from Pocock, p112) 

Effect of the drug oxprenolol on stage-fright in musicians. 

N = 24 musicians, double blind in that neither the musician nor the 

assessor knew the order of treatment. 

     day 1  day 2 

    12  oxp    placebo 

   split at random 

    12 placebo  oxp 

Each musician assessed on each day for nervousness and 

performance quality. 

Can produce the data in the form 

  Patient Oxp  Plac  Difference 

  1  x1  y1    x1 – y1 

  2  x2  y2    x2 – y2   use 

  ..  ..  ..     ...........   paired 

  ..  ..  ..     ...........   t-test 

  24  x24  y24    x24 – y24 

 

More typically design is 

  washout  treatment  washout  treatment 

     A     B 

     B     A 

(where ‘washout’ is a period with no treatment at all) 
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Aside: paired t-test is a one-sample t-test on the differences 

2

1 2
1




d
n

s
n

x xt  

where ds  is the standard deviation of the differences,  

i.e. of the n values (x1,i–x2,i), i=1,2,…,n 

 

Example 2:—  

 Plaque removal of mouthwashes 

  Treatments  A — water 

     B — brand X 

     C — brand Y 

 

 

       order of treatment 

 Patient 1 2 3 

     1  A B C 

     2  A C B 

     3  B A C 

     4  B C A 

     5  C A B 

     6  C B A 

(and perhaps repeat in blocks of six patients) 

 

Note: If it is not possible for each patient to have each treatment 

use balanced incomplete block designs. 
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2.4 Factorial Designs 
In some situations, it may be possible to investigate the effect of 2 

or more treatments by allowing patients to receive combinations of 

treatments 

 

  drug A 

  NO YES  

 NO    

drug         ‘NO’ = placebo 

B     

 YES    

 

Suppose we had 40 patients and allocated 10 at random to each 

combination, then overall 20 have had A and 20 have had B. 

 

Compare this with a parallel group study to compare A and B (and 

a placebo), then with about 40 patients available we would have 

13 in each group (3x13  40). 

 

This factorial design might lead to more efficient comparisons, 

because of ’larger’ numbers. 

 

Obviously not always applicable because of problems with 

interactions of drugs, but these might themselves be of interest. 
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Types of interaction 
 

lines parallel  no interaction 

Drug A increases response by same 

amount irrespective of whether 

patient is also taking B or not 

 

 

 

 

quantitative interaction 

the effect of A is more marked 

when patient is also taking B  

 

 

 

 

 

 

qualitative interaction  

A increases response when given  

alone, but decreases response 

when in combination with B 

 

 

 

mean 
response

plac A drug A 

drug B

plac B

plac A drug A

mean 
response

mean 
respons

e

plac A drug A

drug B

drug B

plac B

plac B
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2.5 Sequential Designs 
In its simplest form, patients are entered into the trial in pairs, one 

receives A, the other B (allocated at random). Test after results 

from each pair are known. 

e.g. simple preference data (i.e. patient says which of A or B is better) 

  pair  1 2 3 4 5 6 7 . . . . . . 

 preference  A A B A B B B . . . . . 

. 

 

 

need ‘boundary stopping rules’ 

e.g . 

 

 

 

 

 

 
 

 

 

 
 

 1     2    3      4     5    6     7    8   9
number of pairs 

 
4 
 
3 
 
2 
 
1 
 
0 
 
-1 
 
-2 
 
-3 
 
-4 

#prefer A – 
#prefer B 

choose B 

choose A 

no 
difference
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Advantages 

1. Detect large differences quickly 

2. Avoids ethical problem of fixed size designs (no patient should 

receive treatment known to be inferior) — but does complicate the 

statistical design and analysis 

 

 

Disadvantages 

1. Responses needed quickly (before next pair of patients arrive) 

2. Drop-outs cause difficulties 

3. Constant surveillance necessary 

4. Requires pairing of patients 
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2.6 Summary & Conclusions 

 ‘Always’ use two-sided tests, not one-sided. One-sided tests 

are almost cheating. 

 ‘Always’ use a separate variance t-test.  

 Never perform a preliminary test of equality of variance. 

 Parallel group designs — different groups of patients receive 

different treatments, comparisons are between patients 

 In series designs — all patients receive all treatments in 

sequence, comparisons are within  patients 

 Crossover designs — all patients receive all treatments but 

different subgroups have them in different orders, 

comparisons are within  patients 

 Factorial designs — some patients receive combinations of 

treatments simultaneously, difficulties if interactions, 

(quantitative or qualitative), comparisons are between 

patients but more available than in series designs 

 Sequential designs — suitable for rapidly evaluated 

outcomes, minimizes numbers of subjects when clear 

differences between treatments 

 Efficient design of clinical trials is a crucial ethical element 

contributed by statistical theory and practice 
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3. Randomization 
3.0 Introduction 

To avoid bias in assigning patients to treatment groups, we need 

to assign them at random. We need a randomization list so that 

when a patient (eligible!) arrives they can be assigned to a 

treatment according to the next number on the list. There are other 

reasons for using random allocations of treatment groups to 

subjects, the most important of which is to provide a basis for use 

of statistical tests and in particular the use of parametric 

procedures derived from the Normal distribution (e.g. t-tests and 

2-tets) but the detailed justification of this is well beyond the 

scope of this course. Provided the total number of possible 

allocations is ‘fairly large’ and the actual one used is randomly 

selected from amongst these then Normal-based tests will be a 

good approximation to the ideal ‘randomization tests’ (again 

beyond the scope of this course). Here ‘fairly large’ might be more 

than a hundred or so (but preferably much more). Problems do 

arise with restricted randomization methods (such as 

‘minimization', see below) where there can be surprisingly few 

possible allocations.  In the simple example used as an exercise in 

the course there are 12 subjects but in fact only 4 possible 

allocations using minimization to select one of these randomly to 

balance the various prognostic factors whereas with total random 

allocation into equally sized groups there are 64 possible 

allocations. 
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3.1 Simple randomization 

For a randomized trial with two treatments A and B the basic 

concept of tossing a coin (heads=A, tails=B) over and over again 

is reasonable but clumsy and time consuming. Thus people 

generate random numbers in a statistical computer package (or 

use tables of random numbers instead.  For the purposes of 

illustration a list of ‘random digits’ will be used but then some 

guidance on using R will be outlined. 

 

Using the following random digits throughout as an example 

(Neave, table 7.1, row 26, col 1) 

3 0 4 5 8 4 9 2 0 7 6 2 3 5 8 4 1 5 3 2 . . . .  

 

Ex 3.1 

  12 patients, 2 treatments A & B 

  Assign ‘at random’ 

 e.g. decide  0 to 4  A 

    5 to 9  B 

    A A A B B A B A A B B A 

 

Randomization lists can be made as long as necessary & one 

should make the list before the trial starts and make it long 

enough to complete the whole trial. 
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Ex 3.2 

  With 3 treatments A, B, C 

  decide  1 to 3   A 

    4 to 6   B 

    7 to 9   C 

    0   ignore 

    A B B C B C A C B A A B 

 

In double blind trials, the randomization list is produced centrally & 

packs numbered 1 to 12 assembled containing the treatment 

assigned. Each patient receives the next numbered pack when 

entering the trial. Neither the doctor nor the patient knows what 

treatment the pack contains — the randomization code is ‘broken’ 

only at the end of the trial before the analysis starts. Even then the 

statistician may not be told which of A, B and C is the placebo and 

which the active treatment. 

 

Disadvantages:– may lack balance (especially in small trials) 

 e.g.  in Ex 3.1 7A’s, 5B’s 

  in Ex 3.2, 4A’s, 5B’s, 3C’s 

 

Advantage:– each treatment is completely unpredictable, and 

probability theory guarantees that in the long run the numbers of 

patients on each treatment will not be substantially different. 
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3.2 Restricted Randomization 
3.2.1 Blocking 

Block randomization ensures equal treatment numbers at certain 

equally spaced points in the sequence of patient assignments.  

Each random digit specifies what treatment is given to the next 

block of patients. 

 

In Ex 3.1 (12 patients, 2 treatments A & B) 

   0 to 4  AB 

       AB AB AB BA BA AB BA 

   5 to 9  BA 

 

In Ex 3.2 (3 treatments A, B & C) 

   1  ABC 

   2  ACB 

   3  BAC 

   4  BCA 

   5  CAB 

   6  CBA 

  7,8,9,0  ignore 

      BAC BCA CAB BCA 

Disadvantage:– This blocking is easy to crack/decipher and so it 

may not preserve the double blinding. 

 

With 2 treatments we could use a block size of 4 to try to preserve 

blindness 
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Ex 3.3 

   1  AABB 

   2  ABAB 

   3  ABBA 

   4  BBAA 

   5  BABA 

   6  BAAB 

  7,8,9,0  ignore 

      ABBA BBAA BABA 

 

Problem:– at the end of each block a clinician who keeps track of 

previous assignments could predict what the next treatment would 

be, though in double-blind trials this would not normally be 

possible. The smaller the choice of block size the greater the risk 

of randomization becoming predictable.   

 

A trial without ‘stratification’ (i.e. all patients of the same ‘type’ or 

category) should have a reasonably large block size so as to 

reduce prediction but not so large that stopping in the middle of a 

block would cause serious inequality. 

 

In stratified randomization one might use random permuted blocks 

for patients classified separately into several types (or strata) and 

in these circumstances the block size needs to be quite small. 
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3.2.2 Unequal Collection 
 In some situations, we may not want complete balanced 

numbers on each treatment  but a fixed ratio.  

 

 e.g.  A Standard 

  B New  need most information on this 

 

 decide on a fixed ratio of 1:2  need blocking 

 

Reason:– more accurate estimates for effects of B; A variation 

probably known reasonably well already if it is the standard. 

Identify all the 3!/2! possible orderings of ABB and assign to digits: 

 

  1 to 3   ABB 

  4 TO 6  BAB 

  7 TO 9  BBA 

   0   ignore 

 

     ABB BAB BAB BBA 
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3.2.3 Stratified Randomization  
(Random permuted blocks within strata) 

It is desirable that treatment groups should be as similar as 

possible in regard of patient characteristics: 

 

relevant patient factors 

e.g.  age   sex  stage of disease      site 

  (<50,>50)  (M,F)       (1,2,3,4) (arm,leg) 

 

Group imbalances could occur with respect to these factors:  

e.g. one treatment group could have more elderly patients or more 

patients with advanced stages of disease. Treatment effects would 

then be confounded with age or stage (i.e. we could not tell 

whether a difference between the groups was because of the 

different treatments or because of the different ages or stages).   

 

Doubt would be cast on whether the randomization had been done 

correctly and it would affect the credibility of any treatment 

comparisons. 
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We can allow for this at the analysis stage through regression (or 

analysis of covariance) models, however we could avoid it by 

using a stratified randomization scheme.  

Here we prepare a separate randomization list for each stratum. 

 

e.g. (looking at age and sex) 8 patients available in each stratum 

 <50, M  A B B A   B B A A 

  50, M  B A B A   B A A B 

 <50, F  A B A B B A A B  

  50, F  A B A B  A B B A  

so as a new patient enters the trial, the treatment assigned is 

taken from the next available on the list corresponding to their age 

and sex. 
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3.2.4 Minimization 

 If there are many factors, stratification may not be possible. 

We might then adjust the randomization dynamically to achieve 

balance, i.e. minimization (or adaptive randomization). This 

effectively balances the marginal totals for each level of each 

factor — however, it looses some randomness. The method is to 

allocate a new patient with a particular combination of factors to 

that treatment which ‘balances’ the numbers on each treatment 

with that combination. See example below.  

 
Ex 3.5 Minimization (from Pocock, p.85) 

Advanced breast cancer, two treatments A & B, 80 patients 

already in trial.  4 factors thought to be relevant:– 

  ‘performance status’ (ambulatory/non-ambulatory), 

   ‘age’ (<50/ 50),  

  ‘disease free-time’ (<2/ 2 years), 

   ‘dominant lesion’ (visceral/osseous/soft tissue). 

Suppose that 80 subjects have already been recruited to the 

study.  A new patient enters the trial who is ambulatory, <50, has 

 2 years disease free time and a visceral dominant tissue.  To 

decide which treatment to allocate her to, look at the numbers of 

patients with those factors on each treatment: suppose that of the 

80 already in the study, 61 are ambulatory, 30 of whom are on 

treatment A, 31 on B; of the 19 non-ambulatory 10 are on A and 9 

on B. Similarly of the 35 aged under 50 18 are on A and 17 on B, 

etc. (the complete set of numbers in each category are given in the 

table below). We now calculate a ‘score’: 
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    Factors   A B  next patient 

performance status:  

 ambulatory   30 31    
 non-ambulatory  10   9 

______________________________________________________ 

age: 

 <50    18 17    

  50    22 23 

______________________________________________________ 

disease free-time: 

 <2 years   31 32 

  2 years     9   8    

______________________________________________________ 

dominant lesion: 

 visceral   19 21    

 osseous     8   7 

 soft tissue   13 12 

______________________________________________________ 

To date,  A score = 30 + 18 + 9 + 19 = 76 

  B score = 31  + 17 + 8 + 21 = 77 

 

        put patient on A  

(to balance up the scores) 

 

(if scores equal, toss a coin or use simple randomization) 
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Unlike other methods of treatment assignment, one does not 

simply prepare a randomization list in advance. Instead one needs 

to keep a continually and up-to-date record of treatment 

assignments by patient factors. Computer software is available to 

help with this (see §3.5). 

Problem:– one possible problem is that treatment assignment is 

determined solely by the arrangement to date of previous patients 

and involves no random process except when the treatment 

scores are equal. This may not be a serious deficiency since 

investigators are unlikely to keep track of past assignments and 

hence advance predictions of treatment assignments should not 

be possible. 

 Nevertheless, it may be useful to introduce an element of 

chance into minimization by assigning the treatment of choice (i.e. 

the one with smallest sum of marginal totals or ‘score’) with 

probability p where p > ½ (e.g. p= ¾ might be a suitable choice). 

 

 Hence, before the trial starts one could prepare 2 

randomization lists. The first is a simple randomisation list where A 

and B occur equally often for use only when the 2 treatments  

have equal scores, the second is a list in which the treatment with 

the smallest score occurs with probability ¾ while the other 

treatment occurs with probability ¼. Using a table of random 

numbers this is prepared by assigning S (=Smallest) for digits 1 to 

6 and L (=Largest) for digits 7 or 8 (ignore 9 and 0). 
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3.2.4.1 Note: Minimization/Adaptive 

Note that some authors use the term Adaptive Randomization as a 

synonym for minimization methods but this is best reserved for 

situations where the outcomes of the treatment are available 

before the next subject is randomised and the randomization 

scheme is adapted to incorporate information from the earlier 

subjects. 

 

3.3 Why Randomize? 

1. To safeguard against selection bias 

2. To try to avoid accidental bias 

3. To provide a basis for statistical tests 
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3.4 Historical/database controls 

Suppose we put all current patients on new treatment and 

compare results with records of previous patients on standard 

treatment. This use of historical controls avoids the need to 

randomize which many doctors find difficult to accept. It might also 

lessen the need for a placebo. 

 

Major problems:– 

 Patient population may change (no formal 

inclusion/exclusion criteria before trial started for the 

historical patients) 

 Ancillary care may improve with time   ‘new’ performance 

exaggerated. 

 

Database controls suffer from similar problems. 

We cannot say whether any improvement in patients is due to drug 

or to act of being treated (placebo effect).  It may be possible to 

use a combination of historical controls supplemented with [a 

relatively small number of] current controls which serve as a check 

on the validity of the historical ones. 
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3.5 Randomization Software 
A directory of randomisation software is maintained by Martin 

Bland at: 

http://www-users.york.ac.uk/~mb55/guide/randsery.htm  

This includes [free] downloadable programmes for simple and 

blocked randomization, some commercial software including 

add-ons for standard packages such as STATA, and links to 

various commercial randomization services which are used to 

provide full blinding of trials. 

 

This site also includes some useful further notes on randomization 

with lists of references etc. 

 

R, S-PLUS and MINITAB provide facilities for random digit 

generation but this is less easy in SPSS. 

3.5.1 Randomization in R 
In R the basic command is sample(.). Type help(sample) 
to find full details. Here some llustrations: 
> x<- c(0:9) 
> x 
 [1] 0 1 2 3 4 5 6 7 8 9 
> sample(x) 
 [1] 6 3 1 7 5 4 9 8 0 2     permutation 
> sample(x,4) 
[1] 3 1 6 7     subsample without replacement 
> sample(x,4,replace=TRUE) 
[1] 0 9 0 7 subsample with replacement 
> sample(x,20,replace=T) 
 [1] 3 8 1 4 0 9 4 7 5 1 6 4 2 3 1 8 3 3 7 0 
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> z<-c(rep("A",5),rep("B",5),rep("C",5)) 
> z 
 [1] "A" "A" "A" "A" "A" "B" "B" "B" "B" "B" "C" 
"C" "C" "C" "C" 
> sample(z) 
 [1] "B" "A" "A" "A" "C" "C" "B" "B" "C" "A" "B" 
"C" "B" "A" "C“ 
> sample(c(rep("A",4),rep("P",2))) 
[1] "A" "A" "P" "A" "P" "A" 
 
and considerably more advanced but very concise (use the 
help() system to find out what each bit does) 
 
> lapply(rep(list(LETTERS[1:3]),4),sample) 
[[1]] 
[1] "A" "C" "B" 
 
[[2]] 
[1] "A" "C" "B" 
 
[[3]] 
[1] "B" "A" "C" 
 
[[4]] 
[1] "B" "A" "C" 
 
>  
and  
> 
matrix(apply(matrix(c("A","B","C"),3,4),2,sample)
,1,3*4) 
     [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] 
[,10] [,11] [,12] 
[1,] "A"  "B"  "C"  "C"  "A"  "B"  "C"  "A"  "B"  
"C"   "A"   "B"   
>  
> 
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3.6 Summary and Conclusions 

Randomization  

 protects against accidental and selection bias 

 provides a basis for statistical tests (e.g. use of normal 

and t-distributions) 

 

Types of randomization include 

 simple (but may be unbalanced over treatments) 

 blocked (but small blocks may be decoded) 

 stratified (but may require small blocks) 

 minimization (but lessens randomness) 

 

Historical and database controls may not reflect change in 

patient population and change in ancillary care as well as 

inability to allow for placebo effect. 
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4. Size of the trial 
4.1 Introduction 

What sample sizes are required to have a good chance of 

detecting clinically relevant differences if they exist? 

 

Specifications required 

[0. main purpose of trial] 

1.  main outcome measure (e.g. A, B estimated by BA X,X ) 

2.  method of analysis (e.g. two-sample t-test) 

3.  result given on standard treatment (or pilot results) 

4.  how small a difference is it important to detect? (=A – B) 

5.  degree of certainty with which we wish to detect it 

         (power, 1-) 
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Note  

 ‘non-significant difference’ is not the same as ‘no clinically 

relevant difference’ exists. 

 mistakes can occur: 

 Type I: false positive; treatments equivalent but result significant ( 

represents risk of false positive result) 

 Type II: false negative; treatments different but result non-

significant ( represents risk of false negative result) 

 



 Statistics in Clinical Trials; Chapter 4:– Size of the Trial  
 

NRJF, University of Sheffield, 16–27 April 2012 63  
 

4.2 Binary Data 
 

Count numbers of ‘Successes’ & ‘Failures’, and look at the case when 

there are equal numbers on standard and new treatments: 

 

 S F  

standard x1 n–x1 n 

new x2 n–x2 n 

 

Model: X1  B(n,1)  and X2  B(n,2)   (binomial distributions), where X1 

and X2 are the numbers of success on standard and new treatments. 

 

Hypotheses:  H0: 1 = 2 vs. H1: 1  2 

(i.e. a 2-sided test of proportions) 

 

Approximations:  Take Normal approximation to binomial: 

 X1  Nn1,n1(1–1) and X2  Nn2,n2(1–2) 

 

Requirements: take  = P[type I error] = level of test = 5% 

   and  = P[type II error] = 1 - power at 2=10% 
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Suppose standard gives 90% success and it is of clinical interest if 

the new treatment gives 95% success (or better), i.e. 

 1 = 0.9 

 2 = 0.95  (i.e. a 5% improvement) 

1–  =  is the power of the test and we decide we want 

(0.95)=0.9 (so we want to be 90% sure of detecting an 

improvement of 5%) 

 

We have (X2/n – X1/n)  N2–1, [2(1–2)+ 1(1–1)]/n) 

since var(X2/n – X1/n) = var(X2/n)+var(X3/n)  

= 2(1–2)/n + 1(1–1)/n 

 

so the test statistic is: 

2 1

0 1 2
2 1

0
0 1

   
   

  
 

X X
n n

~ N( , ) under H :
X Xvar n n

 

and we will reject H0 at the 5% level if 

x
n

x
n n

2 1 2 0 9 0 11 96        

(remembering 1=2=0.9 under H0) 
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The power function of the test is  

 P[reject H0 | alternative parameter 2] 

 = (2) = P{|X2/n –X1/n|>1.96(2x0.9x0.1/n)| 1=0.9,2} 

and we require (0.95) = 0.9 

[Note that for 2=0.95, var(X2/n)=0.95(1–0.95)/n but 

var(X1/n)=0.9(1–0.9)/n since 1=0.9 still] 

Now  

(0.95)=1–P{|X2/n–X1/n|1.96(2x0.9x0.1/n)|1=0.9,2=0.95} 

.95 .05 .9 .1 .95 .05 .9 .1
n n n n

1.96 2 .9 .1/n 0.05 1.96 2 .9 .1/n 0.051
   

                    
         

 

and the last term   
  








 196 0 05

95 05 9 1
0. .

. . . .
n  

so we require 1.96 2 .9 .1 0.05 n 0.1
.95 .05 .9 .1

      
    

 

 

i.e.  2
1 2 .9 .1

.95 .05 .9 .12

(.95 .05 .9 .1)n (0.1) 1.96
.05

  
  

  
    

 

i.e. need around 580 patients in each ‘arm’ of the trial (1,160 in 

total) or more if drop out rate known. Could inflate these by 20% to 

allow for losses.  
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General formula: 

 21 12 2 1 1
2

2 1

(1 ) (1 )n ( ) ( / 2)
( )

       
     

  
 

{N.B. both –1() and –1(/2)<0} 

 

1  and 2 are the hypothetical percentage successes on the two 

treatments that might be achieved if each were given to a large 

population of patients. They reflect the realistic expectations of 

goals which one wishes to aim for when planning the trial and do 

not relate directly to the eventual results. 

 

 is the probability of saying that there is a ‘significant difference’ 

when the treatments are really equally effective   

  (i.e  represents the risk of a false positive result) 

 

 is the probability of not detecting a significant difference when 

there really is a difference of magnitude 1 – 2 (false negative). 
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Notes:– 

1.  Approximation requires  
2 1

1 1
11 1

2 2 1 1

 

   

( )
( ) ( )



  
  

which here = 1.14, so reasonable, — otherwise need to use more 

complex methods. 

2.  Machin & Campbell (Blackwell, 1997) provide tables for various 1, 

2,  and . There are also computer programmes available. 

3.  If we can really justify a 1-sided test (e.g. from a pilot study) then 

put –1(/2)  –1(). 1–sided testing reduces the required sample 

size. 

4.  For given  and , n depends mainly on (2 – 1)2 (& is roughly 

inversely proportional) which means that for fixed type I and type II 

errors if one halves the difference in response rates requiring 

detection one needs a fourfold increase in trial size. 

5.  Freiman et al (1978) New England Journal of Medicine reviewed 71 

binomial trials which reported no statistical significance. They found 

that 63% of them had power < 70% for detecting a 50% difference 

in success rates. (??unethical to spend money on such trials?? 

[Pocock]) 

6.  N depends very much on the choice of type II error such that an 

increase in power from 0.5 to 0.95 requires about 3 times the 

number of patients. 

7.  In practice, the determination of trial size does not usually take 

account of patient factors which might influence predicted outcome. 
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4.3 Quantitative Data 
(i) Quantitative response — standard has mean 1  and new 

treatment has mean 2. 

(ii) Two-sample t-test, but assume n large, so use Normal 

approximation:  X1  N(1, 2/n) and X2  N(2,2/n) 

assume equal sample sizes n and equal known variance 2. 

The test works well in practice provided the variances are not very 

different. 

(iii) Assume 1 known 

(iv) Want to detect a ‘new’ mean of size 2, (or  = 2 –1 the 

difference in mean response that it is important to detect). 

(v) Power at 2 is 1-, i.e. (2)= 1-, the degree of certainty to 

detect such a difference exists. 

 

Test statistic under  H0: 1=2 is T= X X

n

N2 1
2

0
2

0 1 


~ ( , ) 

2-sided  test rejects H0 if 12 1
222

 


 


x x ( )

n
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Power function if new mean = 2 is 

22 1 1 22 12 n2 2 `2

X X 0( ) 1 P ( ) (X X ) ~ N( ), )
2

n

  

 
            
 

 

 

2 2

1 12 1 2 1
2 2

2 2
1   

 

                        
        n n

( ) ( )  

 

and we require (2)=1–, i.e. set 

       





           1
2 2 1 2

1
2 2 1 22 2( ) ( ) ( ) ( )n n  

 

As before, 2nd term  0 as n     

 

so we need       1 1
2 2 1 2 2( ) ( ) ( )  


n  

 

or       
2

21 1
22

2 1

2n ( ) ( )
( )

  


    
  
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Notes:– 

1.  All comments in binomial case apply here also.  

2.  Need to know the variance 2 which is difficult in practice:– may 

be able to look at similar earlier studies, may be able to run a 

small pilot study, may be able to say what the likely maximum 

and minimum possible responses under standard treatment 

could be and so calculate the likely maximum possible range 

and then get an approximate value for  as one quarter of the 

range. 
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4.4 One-Sample Tests 

The two formula given above apply to two-sample tests for proportions 

(§4.2) and means (§4.3). It is straightforward to derive similar formula for 

the corresponding one-sample tests. 

In the case of a one sample test, the required sample size to achieve a 

power of (1– ) when using a size  test of detecting a change from a 

proportion 0 to  is given by  

 0 0

0

1 1

2
2

2
( ) (1 ) ( ) (1 )

n
( )

           


  
 

In the case of a one sample test on means, the required sample size to 

achieve a power of (1– ) when using a size  test of detecting a change 

from a proportion 0 to  is given by 

 2

0

2

2 2
1 1n ( ) ( )

( )
      

  
 

The prime use of this formula would be in a paired t-test with 0=0. 
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4.5 Practical problems 

1.  If recruitment rate of patients is low, it may take a long time to 

complete trial. This may be unacceptable and may lead to loss of 

interest. We could   

  a) increase   

  b) relax  and   

   (and accept that small differences may be missed) 

  c) think of using a multicentre trial (see later) 

2.  Allow for dropouts, missing data, etc.  

e.g. inflate required numbers by 20% to allow for losses 

3.  Statistical procedures must be as efficient as possible   

— consider more complex designs. 
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4.6 Computer Implementation 

R, S-PLUS and MINITAB provide extensive facilities for power and 

sample size calculations and these are easily found under the 

Statistics and Stat menus under Power and Sample Size in the last 

two packages. SPSS does not currently provide any such facilities 

(i.e. up to version 16).  Note that the formulae given above are 

approximations and so results may differ from those returned by 

computer packages, perhaps by as much as 10% in some cases. 

Further, S-PLUS and MINITAB use different approximations and 

continuity corrections. There are many commercial packages 

available, perhaps the industry standard is nQuery Advisor which 

has extensive facilities for more complex problems (analysis of 

variance, regression etc). 

The course web page provides a link to small DOS program, 

POWER.EXE which has good facilities and this can be 

downloaded from the page. There are also links to other free 

sources on the web (and a Google search on power sample size 

will find millions of references).  If you use these free programs 

you should remember how much you have paid for them. 

4.6.1 Implementation in R 
In R the functions power.t.test(), power.prop.test and 

power.anova.test() provide the basic calculations needed for 

finding any one from the remaining two of power, sample size and 

CRD (referred to as “delta” in R) from the other two in the 

commonly used statistical tests of means, proportions and one-

way analysis of variance. The HELP system provides full details 

and extensive examples. power.t.test() can handle both 

two-sample and one-sample tests, the former is the default and 



 Statistics in Clinical Trials; Chapter 4:– Size of the Trial  
 

NRJF, University of Sheffield, 16–27 April 2012 75  
 

the latter requires type="one.sample" in the call to it. 

power.prop.test()only provides facilities for two-sample 

tests. For one-sample the programme power.exe (available from 

the course web page) is available.  

4.6.1.1 Example: test of two proportions 
Suppose it is wished to determine the sample size required to 

detect a change in proportions from 0.9 to 0.95 in a two sample 

test using a significance level of 0.05 with a power of 0.9 (or 90%). 
> power.prop.test(p1=0.9,p2=0.95,power=0.9,sig.level=0.05) 
     Two-sample comparison of proportions power calculation  
              n = 581.082 
             p1 = 0.9 
             p2 = 0.95 
      sig.level = 0.05 
          power = 0.9 
    alternative = two.sided 
 NOTE: n is number in *each* group 

Thus a total sample size of about 1162 is needed, in close 

agreement with that determined by the approximate formula in 

§5.2. 

4.6.1.2 Example: t-test of two means 

What clinically relevant difference can be detected with a two 

sample t-test using a significance level of 0.05 with power 0.8 (or 

80%) and a total sample size of 150 when the standard deviation 

is 3.6? 
> power.t.test(n=75,sd=3.6,power=0.8,sig.level=0.05) 
     Two-sample t test power calculation  
              n = 75 
          delta = 1.657746 
             sd = 3.6 
      sig.level = 0.05 
          power = 0.8 
    alternative = two.sided 
 NOTE: n is number in *each* group 
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4.7 Summary and Conclusions 
Sample size calculation is ethically important since 

 Samples which are too small may have little chance of producing a 

conclusion, so exposing patients to risk with no outcome 

 Samples which are needlessly too large may expose more 

subjects than necessary to a treatment later found to be inferior 

For sample size calculation we need to know 

 outcome measure 

 method of analysis (including desired significance levels) 

 clinical relevant difference 

 power 

 results on standard treatment (including likely variability) 

For practical implementation we need to know the maximum achievable 

sample size. This could be limited by 

 Recruitment rate and time when analysis of results must be 

performed 

 Total size of target population (number of subjects with the 

condition which is to be the subject of the clinical trial) 

 Available budget 

In cases where the maximum sample size is limited it is more useful to 

calculate a table of clinically relevant differences that can be detected 

with a range of powers using the available sample size.  
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Sample size facilities in R in the automatically loaded stats package 

are provided by the three functions power.t.test(), 

power.prop.test() and power.anova.test(). The first handles 

one and two sample t-tests for equality of means, the second handles 

two-sample tests on binomial proportions (but not one-sample tests) and 

the third simple one-way analysis of variance. The first two will calculate 

any of sample size, power, clinically relevant difference and significance 

level given values for the other three. The third will calculate the number 

of groups, the [common] size of each group, the within groups variance, 

the between groups variance, power and sample size given values for 

the other five. 

Programme power.exe (available from the course web pages) will 

calculate 

 one and two-sample t-tests (including paired t-test) 

 one and two-sample tests on binomial proportion 

 test on single correlation coefficient 

 one sample Mann-Whitney U-test 

 Mcnemar’s test 

 multiple comparisons using 2-sample t-tests 

 cross-over trial comparisons 

 log rank test (in survival) 

Facilities are available in a variety of freeware and commercial software 

for many more complex analyses (e.g. regression models) though in 

many practical cases substantial simplification of the intended analysis 

is required and so calculations can only be used as a guide. 
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5. Multiplicity and interim analysis 
5.1 Introduction 

This section outlines some of the practical problems that arise 

when several statistical hypothesis tests are performed on the 

same set of data.  This situation arises in many apparently quite 

different circumstances when analyzing data from clinical trials but 

the common danger is that the risk of false positive results can be 

much higher than intended.  The particular danger is when the 

most statistically significant result is selected from amongst the 

rest for particular attention, perhaps quite unintentionally. 

The most common situations where problems of multiplicity (or 

multiple testing) arise are encountered are 

 multiple endpoints 

 subgroup analyses 

 interim analyses 

 repeated measures 

The remedies for these problems include adjusting nominal 

significance levels to allow for the multiplicity (e.g. Bonferroni 

adjustments  or more complex methods in interim analyses), use 

of special tests (e.g. Tukey’s test for multiple comparisons or 

Dunnett’s Test for multiple comparisons with a control) or use of 

more sophisticated statistical techniques (e.g. Analysis of Variance 

or Multivariate Analysis). 
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We begin with a brief example (constructed artificially but not far 

from reality). 

 

5.1.1 Example: Signs of the Zodiac 
(Effect of new dietary control regime.) 

 

Data: 250 subjects chosen ‘randomly’. Weighed at start of week 

and again at end of week. Data in kg. 

 

Results:  
                  N      Mean      StDev    SE Mean 
Weight before    250    58.435    12.628     0.799 
Weight after     250    58.309    12.636     0.799 
Difference       250     0.126     1.081     0.068 

So, average weight loss is 0.13kg (1/4 pound) 

Confidence interval for mean weight loss is (–0.009, 0.260)kg. 

Paired t-test for weight loss gives a t-statistic of 1.84, giving a 

p-value of 0.067 (using a two-sided test). (t=0.126/0.068) 

 

Not quite significant at the 5% level ! 
 

Can anything be done to ‘squeeze’ a significant result out of this 

expensive study (we’ve been told we cannot change our mind and 

use a one-sided test instead!) ????? 

— luckily, the birth dates are available. Perhaps the success 

of the diet depends upon the personality and determination 

of the subject. So, look at subgroups of the data by their sign 

of the Zodiac:– 
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Mean weight loss by sign of the Zodiac 
 

Zodiac sign 
 

n 
mean 

weight 
loss 

standard 
error of 
mean 

 
t 

 
p-value 

 

Aquarius 26 0.313 0.217 1.44 0.161  

Aries 15 0.543 0.205 2.65 0.019  

Cancer 21 0.271 0.249 1.09 0.289  

Capricorn 27 -0.191  0.222 -0.86  0.397  

Gemini 18 0.068 0.266 0.26 0.801  

Leo 22 0.194 0.234 0.83 0.416  

Libra 26 0.108 0.217 0.50 0.623  

Pisces 19 0.362 0.232 1.56 0.136  

Sagittarius 12 0.403 0.294 1.37 0.197  

Scorpio 20 0.030 0.274 0.11 0.248  

Taurus 22 -0.315  0.183 -1.72  0.099 ? 

Virgo 22 0.044 0.238 0.18 0.955  

Conclusions: those born under the sign of Aries are particularly 

suited to this new dietary control. It is well known that Arieans 

have the strength of character and determination to pursue a strict 

diet and stick to it.   On the other hand, there seems to be some 

suggestion that those under the sign of Taurus have actually put 

on weight.   Again, not really surprising when one considers the 

typical characteristics of Taurus…………… . (& if we also used a 

1-sided p-value………  .) 

Comment: This is nonsense! The fault arises in that the most 

significant result was selected for attention without making any 

allowance for that selection.  The subgroups were considered after 

the first test had proved inconclusive, not before the experiment 

had been started so the hypothesis that Aireans are good dieters 

was only suggested by the data and the fact that it gave an 

apparently significant result. This is almost certainly a   

        false positive result. 
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Note:   The data for weight before and weight after were artificially 

generated as two samples from a Normal distribution with mean 

58.5 and variance 12.5, i.e. there should be no significant 

difference between the mean weights before and after (as indeed 

there is not).  Birth signs were randomly chosen with equal 

probability. Two sets of data had to be tried before finding this 

feature of at least one Zodiac sign providing a false positive. 

This example will be returned to later, including ways of analysing 

the data more honestly. 
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5.2 Multiplicity 
5.2.1 Fundamentals 

In clinical trials a large amount of information accumulates quickly 

and it is tempting to analyse many different responses: i.e. to 

consider multiple end points or perform many hypothesis tests on 

different combinations of subgroups of subjects. 

Be careful! 
All statistical tests run the risk of making mistakes and declaring 

that a real difference exists when in fact the observed difference is 

due to natural chance variation.  However, this risk is controlled 

for each individual single test and that is precisely what is meant 

by the significance level of the test or the p-value. The p-value is 

the more precise calculation of the risk of a false positive result 

and is more commonly quoted in current literature. The 

significance level is usually the broader range that the p-value falls 

or does not fall in, e.g. ‘not significant at the 5% level’ means that 

the p-value exceeds 0.05 (& may in fact be much larger than 0.05 

or possibly only slightly greater). 

However, it is difficult to control the overall risk of declaring at least 

one false positive somewhere if many separate significance tests 

are performed.  If each test is operated at a separate significance 

level of 5% then we have a 95% chance of not making a mistake 

on the first test, a 95%95% (= 90.25%) of avoiding a mistake on 

either of the first two and so nearly a 10% risk of one or other (or 

both) of the first two tests resulting in a false positive. 
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If we perform 10 (independent) tests at the 5% level, then 

Prob [reject H0 in at least one test when H0 is true in all cases] =  

    1 – (1– 0.05)10 = 0.4 

i.e. a 40% chance of declaring a difference when none exists!!!! 

 

Perhaps a more familiar situation is the calculation of Normal 

Ranges in clinicochemcal tests.   A ‘normal person’ has been 

defined as one who has not been sufficiently investigated.  A 

normal range comprise 95% of the values.  If 100 normal persons 

are evaluated by a clinical test then only 95 of them will be 

declared normal.  If they are then subjected to another 

independent test then only 90 of them will remain as being 

considered normal.  After another 8 tests there will be only 60 

normals left. 

 

Aside:  A complementary problem is that of false negatives, i.e. 

failing to detect a difference when one really exists.  Clearly the 

risk diminishes as more and more tests are performed but at the 

greatly increased risk of more false positives.  (If you buy more 

Lotto tickets you are more likely to win, but at increasing expense).  

These problems are more complex and are not considered here, 

nor are they commonly considered in the medical statistical 

literature. 
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5.2.2 Bonferroni Corrections 
A simple but very conservative remedy to control the risk of 

making a false positive is to lower the nominal significance level of 

the individual tests so that when you calculate the overall final risk 

after performing k tests it turns out to be closer to your intended 

level, typically 5%. This is known as a Bonferroni correction. The 

simplest form of the rule is that if you want an overall level of  and 

you perform k (independent) significance tests then each should 

be run at a nominal /k level of significance. 

Examples:   

(a) 5 separate tests will be performed, so to achieve an overall 5% 

level of significance a result should only be declared if any test is 

nominally significant at the 5%/5=1% significance level. 

(b) 25 tests are to be performed, an overall level of 1% is intended, 

so each should be run at a nominal level of 1/25=0.04%, i.e. a 

result should not be claimed unless p<0.0004 in any one of them. 

(c) 12 tests have been performed and the smallest p-value is 

0.019.  What is the overall level of significance? The Bonferroni 

method suggests that it is safe to claim only an overall level of 

120.019 = 0.228.   Note that this is the situation in the Signs of 

the Zodiac example above.  This suggests we have no worthwhile 

evidence of any birth sign being particularly suited to dieting. (We 

will return later to this example). 
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Note: Clearly, if a large number of tests is to be performed the 

Bonferroni correction will demand a totally unrealistically small 

p-value.  This is because the Bonferroni method is very 

conservative — it over-corrects and in part this is because a 

simple but only roughly approximate formula has been used.    

We can make a more exact calculation which says that to achieve 

a desired overall level of  when performing k tests you should use 

a nominal level of  where  = 1 – (1– )k, i.e. only declare a result 

significant at level  if p < , where  is given by the formula above.  

It may not appear very easy to calculate the level from this formula 

and usually it is not worthwhile since it would not really cure the 

problem of it being over conservative and usually there are better 

ways of overcoming the problem of multiplicity, by concentrating 

on the more important objectives of the trial or using a more 

sophisticated analysis.   

Aside: an approximately solution to the formula above is  = /k 

which is the derivation of the simple Bonferroni correction.   

The exact solution is  = 1 – exp{1/k log(1 – )}. 
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5.2.3 Multiple End-points 
The most common situation where problems of multiple testing 

arise is when many different outcome measures are used to 

assess the result of therapy.  It is rare that only a single measure 

is used (‘once you have got hold of the subject then measure 

everything in sight’).  For example, it is routine to record pulse rate, 

systolic and diastolic blood pressure, perhaps sitting, standing and 

supine before and after exercise in hypertensive studies. However, 

separate significance tests on each separate end-point 

comparison increases the chance of some false positives. 

Remedies:  

 Bonferroni correction  
 choose primary outcome measure 
 multivariate analysis 

Applying Bonferroni corrections is unduly conservative, i.e. it 

means that you are less likely to be able to declare a real 

difference exists even if there is one.  The reason for this is that 

the results from multiple outcome measures are likely to be highly 

correlated. If the drug is successful as judged by standing systolic 

blood pressure it is quite likely that the sitting systolic blood 

pressure would provide similar evidence.  If you had not measured 

the other outcomes and so been forced to use a Bonferroni 

adjustment in multiplying all your p-values by the number of tests 

and had instead stayed with just the single measure you might 

have had an interesting result. This would be particularly 

frustrating if you had considered 20 highly correlated measures, 

each providing a nominal p-value of around 0.01 and Bonferroni 

told you that you could only claim an overall p-value of 0.2. 
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The recommended remedy is to concentrate on a primary outcome 

measure with perhaps a few (two or three) secondary measures 

which you consider as well (perhaps making an informal 

Bonferroni correction).  Of course it is essential that these are 

decided in advance of the trial and this is stated in the protocol. 

The choice can be based on medical expertise or from initial 

results from a pilot study if the trial is a novel situation.   This does 

not preclude recording all measures that you wish but care must 

be taken in reporting analyses on these — this is particularly true 

of clinicochemcial laboratory results (and especially when they are 

recorded as within or without ‘Normal Ranges’, see above).  Of 

course these should be scrutinized and any causes for concern 

reported. 

 

The ideal statistical remedy is to use a multivariate technique 

though this may require seeking more specialist or professional 

statistical assistance.  Multivariate techniques will make proper 

allowance in the analysis for correlated observations (e.g. sitting 

and standing systolic blood pressure).  There are multivariate 

equivalents of routine univariate statistical analyses such as 

Student’s t-test (it is Hotelling’s T2-test), Analysis of Variance or 

ANOVA (it is Multivariate Analysis of Variance or MANOVA, with 

Wilks’ test or the Lawley-Hotelling test).   
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The advantage of multivariate analysis is that it will handle all 

measurements simultaneously and return a single p-value 

assessing the evidence for departure from the null hypothesis, e.g. 

that there is a difference between the two treatment groups as 

revealed by the battery of measures.  This advantage is balanced 

by the potential difficulty of interpreting the nature of the difference 

detected.  It may be that all outcome measures ‘are better’ in one 

group in which case common sense prevails. Practical experience 

reveals this is often not so simple and experience is needed in 

interpretation. This is in part the reason that they are perhaps not 

so widely used in clinical trials. Further, it is not so easy to define 

criteria of effectiveness in advance for inclusion in a protocol.  

Many of these multivariate statistical procedures are now included 

in widely available statistical packages but advice must be to use 

them with caution unless experienced help is to hand. 
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5.2.4 Cautionary Examples 
Andersen (1990) reports several examples of ignoring the 

problems of multiplicity. First, (ref: Br J Clin Pharmacol [Suppl.], 

1983, 16: 103) a study of the effect of midazolan on sleep in 

insomniac patients presented a table of 29 tests of significance 

on measures of platform balance (seconds off balance) made at 

various times.   The case of measuring the same outcome at 

successive times is a common one which requires a particular 

form of multivariate analysis termed repeated measures 

analysis.   

Next, (ref: Basic Clin Med 1981, 15: 445) a report of a new 

compound to treat rheumatoid arthritis evaluated in a double-blind 

controlled clinical trial, indomethacin being the control treatment. 

Andersen reports that there were several criteria for effect (i.e. 

end-points), repeated at various timepoints and various 

subdivisions. A total of 850 pairwise comparisons were made 

(t-tests and Fisher’s exact test in 22 contingency tables) and 48 

of these gave p-values < 0.05.   If there were no difference in the 

treatment groups and 850 tests were made then one might expect 

that 5% of these would shew ‘significant’ results. 5% of 

850 = 850/20 = 42.5 so finding 48 is not very impressive. 

Andersen quotes The Lancet (1984, ii: 1457) in relation to 

measuring everything that you can think of (or ‘casting your net 

widely’) as saying “Moreover, submitting a larger number of factors 

to statistical examination not only improves your chances of a 

positive result but also enhances your reputation for diligence”. 
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5.3 Subgroup analyses 
5.3.1 Fundamentals 

Problems of multiplicity arise when separate comparisons are 

made within each of several subgroups of the subjects, for 

example when the sample of patients is subdivided on baseline 

factors, e.g. on gender and age for example resulting in four 

subgroups: (i) M>50; (ii) F>50; (iii) M50 & (iv) F50. Just as with 

multiple end-points, the chance of picking up an effect when none 

exists increases with the number of subdivisions. 

Often subgroups are quite naturally considered and there are good 

a priori reasons for investigating them. If so, then this would of 

course be recorded in the protocol. If the subgroups are only 

investigated when an overall analysis gives a non-significant result 

and so subgroups are dredged to retrieve a significant result (as in 

the Zodiac example) then extreme care is needed to avoid 

charges of dishonesty.  A safe procedure is only to use [post-hoc] 

subgroup analyses to suggest future hypotheses for testing in a 

later study. 

Remedy: 

 Bonferroni adjustments 

 Analysis of Variance 

 Follow-up tests for multiple comparisons 

Bonferroni adjustments can be used but suffer from the same 

element of conservatism as in other cases but not so acutely since 

typically tests on separate subgroups are independent (unlike tests 

on multiple end-points).  
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The recommended routine remedy is to perform an Analysis of 

Variance (ANOVA) to investigate differences between the 

subgroups and then follow up the result of this (if a significant 

result is detected) to determine which subgroups are ‘interesting’.   

A one-way analysis of variance can be thought of as a 

generalisation to several samples of a two-sample t-test to test for 

the differences between several subgroups. The test examines the 

null hypothesis that all subgroups have the same mean against the 

alternative that at least one of them is different from the rest. The 

rationale for performing this as a preliminary is that if you think that 

the effect (e.g. a treatment difference) may only be exhibited in 

one of several subgroups then it means that one (or more) of the 

subgroups is different from the rest and so it makes sense to 

examine the statistical evidence for this. Follow-up tests can then 

be used to identify which one is of interest. There are many 

possible follow-up tests which are designed to examine slightly 

different situations. Examples are Tukey’s multiple range test 

which examines whether the two most different means are 

‘significantly different’, Dunnett’s test which examines whether any 

particular group mean is ‘significantly different’ from a control 

group, the Neuman-Keuls test which looks to see which pairs of 

treatments are different and there are many others which may be 

found in commonly used statistical packages. 



 Statistics in Clinical Trials; Chapter 5:– Multiplicity & c.  
 

NRJF, University of Sheffield, 16–27 April 2012 95  
 

5.3.2 Example: Zodiac (Cont.) 

returning yet gain to the signs of the Zodiac example the 

appropriate analysis when the subjects are classified by Zodiac 

sign is to perform a one-way analysis of variance of the weight 

losses with the Zodiac sign as the classification variable. the 

analysis presented here is performed in MINITAB but other 

packages would (should) give identical results: 
One-way ANOVA: Weight loss versus Zodiac sign 
 
Analysis of Variance for Weight loss 
Source     DF        SS        MS        F        P 
Zodiac s   11     13.44      1.22     1.05    0.405 
Error     238    277.49      1.17 
Total     249    290.93  
                                       Individual 95% CIs For Mean 
                                          Based on Pooled StDev 
                                     -0.60      0.00      0.60      1.20 
Level         N      Mean     StDev  ---+---------+---------+---------+--- 
Aquarius     26     0.313     1.106             (------*------)  
Aries        15     0.543     0.794               (--------*--------)  
Cancer       21     0.271     1.140            (-------*------)  
Capricorn    27    -0.191     1.155     (------*------)  
Gemini       18     0.068     1.128        (-------*-------)  
Leo          22     0.194     1.096           (------*-------)  
Libra        26     0.108     1.105          (------*------)  
Pisces       19     0.362     1.010             (-------*-------)  
Sagittarius  12     0.403     1.018           (----------*---------)  
Scorpio      20     0.030     1.226        (-------*------)  
Taurus       22    -0.315     0.860  (-------*------)  
Virgo        22     0.044     1.117        (-------*------)  
                                   ---+---------+---------+---------+--- 
Pooled StDev =    1.080            -0.60      0.00      0.60      1.20 

This shews that the overall p-value for testing for a difference 

between the means of the twelve groups is 0. 405 >> 0.05 (i.e. 

non-significant). 

The sketch confidence intervals for the means give an impression 

that the interval for the mean weight loss for Aries just about 

excludes zero but this makes no allowance for the fact that this is 

the most extreme of twelve independent intervals. The box pot on 

the next page gives little indication that any mean is different from 

zero: 
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Here the grey boxes indicate inter-quartile ranges (i.e. the ‘middle 

half’).   

At this stage one would stop since there is no evidence of any 

difference in mean weight loss between the twelve groups but for 

illustration if we arbitrarily take the final sign (Virgo) as the ‘control’ 

and use Dunnett’s test to compare each of the others with this 

then we obtain  
Dunnett's comparisons with a control 
    Family error rate = 0.0500        Individual error rate = 0.00599 
Critical value = 2.77:   Control = level (Virgo) of Zodiac sign:  
Intervals for treatment mean minus control mean 
 
Level          Lower  Center  Upper   ------+---------+---------+---------+- 
Aquarius      -0.598   0.269  1.136          (---------*----------)  
Aries         -0.503   0.500  1.502           (-----------*------------)  
Cancer        -0.686   0.227  1.141        (-----------*----------)  
Capricorn     -1.095  -0.235  0.625   (----------*----------)  
Gemini        -0.927   0.024  0.976     (-----------*-----------)  
Leo           -0.753   0.150  1.053        (----------*----------)  
Libra         -0.803   0.064  0.931       (----------*----------)  
Pisces        -0.620   0.318  1.256         (-----------*-----------)  
Sagittarius   -0.716   0.359  1.433        (------------*-------------)  
Scorpio       -0.939  -0.014  0.911     (-----------*----------)  
Taurus        -1.261  -0.359  0.544 (-----------*----------)  
                                     ------+---------+---------+---------+- 
                                         -0.80      0.00      0.80      1.60 
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This gives confidence intervals for the difference of each mean 

from that of the Virgo group, making proper allowance for the 

multiplicity and it is seen that all of these comfortably include zero 

so indicating that there is no evidence of any difference when due 

allowance is made for the multiple comparisons. 

Another useful technique in this situation is to look at the twelve 

p-values associated with the twelve separate tests. If there were 

any underlying evidence that some groups were shewing an effect 

then some of  them would be clustered towards the lower end of 

the scale from 0.0 to 1.0 (the values are given in the table on P5). 

 

 

 

 

This shews that the values are reasonably evenly spread over the 

range from 0.0 to 1.0 and in particular that the lowest one is not 

extreme from the rest. 

 

 

 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

p-value

Dotplot of p-values 
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6.3.3 More Cautionary Examples 
First, a report of an actual clinical double-blind study where two 

treatments were compared and there was an extra unusual 

element of blinding in that in fact the two treatments were actually 

identical, see Lee, McNear et al (1980), Circulation. 

1073 patients with coronary heart disease were randomized into 

group 1 and group 2, baseline factors were reasonably balanced. 

The response was survival time and on initial analysis the overall 

differences between treatment groups non-significant. 

 

Then subgroup analyses were performed: 6 groups were identified 

on the basis of 2 baseline factors (left ventricular contraction 

pattern:- normal/abnormal; number diseased vessels 1/2/3). A 

significant difference in survival times was found in one of the 

groups (abnormal/3, 2=5.4, p<0.023) and could be justified 

scientifically. Sample sizes were quite large:– 

n=397:  n1=194,  n2=203 

 

In fact, all patients were treated in the SAME way — the 

‘treatment’ corresponded to the random allocation into 2 groups. 

Thus a false positive effect had been discovered. 
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5.4 Interim analyses 
5.4.1 Fundamentals 

It may be desirable to analyse the data from a trial periodically as it 

becomes available and again problems of multiple testing arise.  

Here the remedies are rather different (and considerably more 

complex) since not only are the sequence of tests not independent 

but successive tests are based on accumulating data, i.e. the data 

from the first period test are pooled into that collected 

subsequently and re-analyzed with the newly obtained values. 

The main objectives of this periodic checking are:– 

 To check protocol compliance, e.g. compliance rate 

may be very low. Check that investigators are 

following the trial protocol and quick inspection of each 

patient’s results provides an immediate awareness of 

any deviations from intended procedure. If early 

results indicate some difficulties in the compliance it 

may be necessary to make alterations in the protocol.  

 To pick up bad side effects so that quick action can be 

taken and warn investigators to look out for such 

events in future patients. 
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 Feedback:– helps maintain interest in trial and satisfy 

curiosity amongst investigators. Basic pre-treatment 

information such as numbers of patients  should be 

available. Overall data on patient response and follow 

up for all treatments combined can provide a useful 

idea of how the trial is proceeding.  

 Detect large treatment effects quickly so one can stop 

or modify trial. 

 

The primary reason for monitoring trial data for treatment 

differences is the ethical concern to avoid any patient in the trial 

receiving a treatment known to be inferior. In addition, one wishes 

to be efficient in the sense of avoiding unnecessary continuation 

once the main treatment differences are reasonably obvious. 

However, multiplicity problems exist here too. We have repeated 

significance tests although not independent — so the overall 

significance level will be much bigger than the nominal level of  

used in each test. 

 

5.4.2 Remedy: 
To incorporate such interim analyses we must:– 

 build them into the protocol (e.g. a group sequential 

design) 

 reduce the nominal significance level of each test, so 

overall level is required  

However, if we use the standard Bonferroni adjustment then we 

obtain very conservative procedures for exactly the same reasons 
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as detailed in earlier sections. Instead we need refined 

calculations for the appropriate nominal p-values to use at each 

step to achieve a desired overall significance level. These 

calculations are different from those given earlier since there the 

tests were assumed entirely independent; here they assume that 

the data used for the first test is included in that for the second, 

both sets in that for the third etc. (i.e. accumulating data) — the 

exact calculations are complicated. The full details are given in 

Pocock (1983) and summarized from there in the tables below:– 

 

Repeated significance tests on 
accumulating data 

Number of repeated 
tests at the 5% level 

overall significance 
level 

1 0.05 

2 0.08 

3 0.11 

4 0.13 

5 0.14 

10 0.19 

20 0.25 

50 0.32 

100 0.37 

1000 0.53 

 1.0 
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Nominal significance levels required for repeated 

two-sided significance testing for various  

N =0.05 =0.01 

2 0.029 0.0056 

3 0.022 0.0041 

4 0.018 0.0033 

5 0.016 0.0028 

10 0.0106 0.0018 

15 0.0086 0.0015 

20 0.0075 0.0013 

 

Here N is the maximum number of interim analyses to be 

performed and this is decided in advance (and included in the 

protocol of course). 
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5.4.3 Yet More Cautionary Examples 
First an example quoted by Pocock (1983, p150). This is a study 

to compare of drug combinations CP and CVP in non-Hodgkins 

lymphoma. The measure was occurrence or not of tumour 

shrinkage. The trial was over 2 years and likely to involve about 

120 patients. Five interim analyses planned, roughly after every 

25th result. The table below gives numbers of ‘successes’ and 

nominal p-values using a 2 test at each stage. 

 
 response rates  

Analysis CP CVP statistic & p-value 

1 3/14 5/11 1.63 (p>0.20) 

2 11/27 13/24 0.92 (p>0.30) 

3 18/40 17/36 0.04 (p>0.80) 

4 18/54 24/48 3.25 (0.05<p<0.1) 

5 23/67 31/59 4.25 (0.025<p<0.05) 

 

Conclusion: Not significant at end of trial (overall p>0.05) since 

p>0.016, the required nominal value for 5 repeat tests (see table 

above). 
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5.4.3.1 Notes:– 

 If there had been NO interim analyses and only the 

final results available then the conclusion would have 

been different and CVP declared significantly better 

at the 5% level. 

 In the early stages of any trial the response rates can 

vary a lot and one needs to avoid any over reaction to 

such early results on small numbers of patients. For 

instance, here the first 3 responses occurred on CVP 

but by the time of the first analysis the situation had 

settled down and the 2 test showed no significant 

difference. By the fourth analysis, the results began to 

look interesting but still there was insufficient 

evidence to stop the trial. On the final analysis, when 

the trial was finished anyway, the 2 test gave p=0.04 

which is not statistically significant, being greater than 

the required nominal level of 0.016 for N=5 analyses.  

A totally negative interpretation would not be appropriate from 

these data alone. One could infer that the superiority of the CVP 

treatment is interesting but not conclusive. 
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Next, an example quoted by Andersen (1990), (ref: Br J Surg, 

(1974), 61: 177). “A randomized trial of Trasylol in the treatment of 

acute pancreatitis was evaluated statistically when 49 patients had 

been treated. No statistically significant difference was evident 

between the two groups, but a trend did emerge in favour of one 

group. The trial was therefore continued. When altogether 100 

cases had been treated, the data were analyzed again. There was 

now a significant difference (2 = 4.675, d.f. = 1, p< 0.05) and the 

trial was published.”   

In fact the p-value is 0.031and even if only two interim analyses 

(including the final one) had been planned this is greater than the 

necessary 0.029 to claim 5% significance.   

Continuing to collect data until a significant result is obtained is 

clearly dishonest — eventually an apparently significant result will 

be obtained. 
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5.4.3.2 Further Notes:–  

 One decides in advance what is expected as the maximum 

number of interim analyses and accordingly makes the 

nominal significance level smaller. e.g. with at most 10 

analyses and overall type I error = 0.05 one uses p<0.0106 

as the stopping rule at each analysis for a treatment 

difference. One should also consider whether an overall 

type I error =0.05 is sufficiently small when considering a 

stopping rule. There are 2 situations where =0.01 may be 

more appropriate:  

i)  if a trial is unique in that its findings are unlikely to be 

replicated in future research studies  

ii)  if there is more than one patient outcome used in 

interim analyses and stopping rule is applied to each  

outcome. However, one possibility would be to have 

one principal outcome with a stopping rule having 

=0.05 and have lesser outcomes with =0.01. It has 

been suggested that a very stringent stopping criterion, 

say p<0.001, should be used, on the basis that no 

matter how often one performs interim analyses the 

overall type error will remain reasonably small. It also 

means that the final analysis, if the trial is not stopped 

early, can be interpreted using standard significance 

tests without any serious need to allow for earlier 

repeated testing. 

 See Pocock (1983) for more detail. 
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5.5 Repeated Measures 
5.5.1 Fundamentals 

Repeated measures arise when the same feature on a patient is 

measured at several time points, e.g. blood concentration of some 

metabolite at baseline and then at intervals of 1, 3, 6, 12 and 24 

hours after ingestion of a drug.  If, for example, there are two 

groups of subjects (e.g. two treatment groups) it is tempting to use 

two-sample t-tests on the measures at each time point in 

sequence.   Of course this is incorrect unless adjustments are 

made.  However, diagrams which shew mean values of the two 

treatment groups plotted against time and which shew error bars 

for each mean invite the eye to do exactly that and this must be 

resisted. 

Remedies: 

 Bonferroni adjustments 

 Multivariate analysis for repeated measures 

 Construction of summary measures. 

No essentially new comments apply to this situation and indeed 

some examples discussed earlier include a repeated measure 

element. Bonferroni adjustments are very conservative since the 

tests will be highly correlated (as with multiple end-points).   

Multivariate analysis of repeated measures can take advantage of 

the fact that the observations are obtained in a sequence and it 

may be possible to model the correlation structure.   
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There are special techniques which do this and specialist or 

professional advice should be sought.   Some so-called ‘repeated 

measures analyses’ in some statistical packages are in fact quite 

spurious. 

Calculation of summary measures includes calculating quantities 

such as ‘area under the curve’ (AUC) which may have an 

interpretation as reflecting bioavailability, another is concentrating 

on change from baseline.   As always, the form of the analysis 

should be fixed before collection of the data. 
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5.6 Miscellany 
5.6.1 Regrouping 

The example below illustrates the dangers of post-hoc 

recombining subgroups, perhaps a complementary problem to that 

of post-hoc dividing into subgroups. The example is taken from 

Pocock (1983) who quotes Hjalmarson et al (1981), The Lancet, ii: 
823.  The table gives the numbers of deaths or survivals in 90 

days after acute myocardial infarction with the subgroup for 

age-group 65-69 combined first with the older subgroup and then 

with the younger one.  For this subgroup the death rates on 

placebo and metoprolol were 25/174 (14.4%) and 17/165 (6.7%) 

respectively. 

 placebo metoprolol  

deaths 62/697 (8.9%) 40/698 (5.7%) p<0.02 

age 40–64 26/453 (5.7%) 21/464 (4.5%) p>0.2 

age 65–74 36/244 (14.8%) 19/234 (8.1%) p=0.03 

 Metoprolol better for elderly?  

age 40–69 51/627 (8.1%) 32/629 (5.1%) p=0.04 

age 70–74 11/70 (15.7%) 8/69 (11.6%) p>0.2 

 Metoprolol better for younger?  

 

As well as the dangers of multiple testing, this example illustrates 

the dangers of post-hoc re-grouping, subgroups should be defined 

on clinical grounds before the data are collected. 

Some subgroup effects could be real of course. However, we 

should only use subgroup analyses to generate future hypotheses. 
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5.6.2 Multiple Regression 

A further situation where multiplicity problems arise in a 

well-disguised form and which is often ignored is in large 

regression analyses involving many explanatory variables.  This 

applies whether the model is ordinary regression with a 

quantitative response or whether it is a logistic regression for 

success/failure data or even a Cox proportional hazards 

regression for survival data.    

When analysing the results of estimating such models it is usual to 

look at estimates of the individual coefficients in relation to their 

standard errors, declare the result ‘significant’ at the 5% level if the 

ratio is more than 1.96 (or 2) in magnitude and conclude that the 

corresponding variable ‘is important’ in affecting the response. It is 

customary for problems of multiplicity to be ignored on the grounds 

that although there are several or even many separate 

(non-independent) t-tests involved, each of the variable si of 

interest in its own right and that is why it was included in the 

analysis.    

However, there are situations where the regression analysis is 

more of a fishing expedition and it is more a case of ‘lets plug 

everything in and see what comes out’, effectively selecting the 

most significant result for attention.  

If this is the case then an honest analysis would have to include 

this feature and make an appropriate correction, such as a 

Bonferroni one. Beware especially of including an interaction in a 

model when there is no a priori reason to expect it. 
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5.6.2.1 Example: shaving & risk of stroke  

In the Autumn of 2003 it was reported widely in the media that men 

who did not shave regularly were ‘70% more likely to suffer a 

stroke and 30% more likely to suffer heart disease, according a 

study at the University of Bristol’.   This is an eye-catching item 

and so was easily accepted as true.   

It is likely that these conclusions were based on a logistic 

regression model, looking at the probability of suffering a stroke, or 

on some similar regression model. However, it is of importance to 

know whether firstly there was any a priori medical hypothesis that 

suggested that diligence in shaving was a feature to be 

investigated and secondly how many other variables were 

included in the study.   The exact reference for this study is 

Shaving, Coronary Heart Disease, and Stroke: The Caerphilly Study 

Ebrahim et al. Am. J. Epidemiol.2003; 157: 234-238, see 

http://aje.oxfordjournals.org/cgi/content/full/157/3/234 , and you are 

invited to read this article critically.   
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5.7 Summary and Conclusions 
Multiplicity can arise in  

 testing several different responses 

 subgroup analyses 

 interim analyses 

 repeated measures 

 &c. 

The effect of multiplicity is to increase the overall risk of a false 

positive (i.e. the overall significance level). 

Problems of multiplicity can be overcome by  

 Bonferroni corrections to nominal significance levels 

 Other adjustments to nominal significance levels in special 

cases, e.g. for accumulating data in interim analyses where 

adjusting for multiplicity can have counter-intuitive effects. 

 more sophisticated analyses, e.g. ANOVA or multivariate 

methods. 

Bonferroni adjustments are typically very conservative because in 

many situations the tests are highly correlated (especially with 

multiple end-points and repeated measures).  

Conservative means ‘safe’ — i.e. you preserve your scientific 

reputation by avoiding making mistake but at the expense of failing 

to discover something scientifically interesting. 

A final comment is to remember that 

“If you torture the data often enough it will eventually confess” 
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6. Crossover Trials 
6.1 Introduction 

Where it is possible for patients to receive both treatments under 

comparison, crossover trials may well be more efficient (i.e. need 

fewer patients) than a parallel group study. 

Recall idea from section 2.: by acting as his/her own control, the 

effect of large differences between patients can be lessened by 

looking at within patient comparisons. 

 

Example 6.1 (Pocock, p112) 

Hypertension trial: 

      period 1  period 2 

     ½ new drug B  standard A 

washout   randomized  (4 weeks)  (4 weeks) 

for 4 weeks  

     ½ standard A  new drug B 

Response is systolic blood pressure at end of 5 minute exercise test. 

 B  A: 55 patients,   A  B: 54 patients. 

 

Possible effect:   treatment effects  

    period effect   

    carryover effect   
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6.2 Illustration of different types of effects 
Note: assuming that ‘low’ is good throughout 

 

 

a) Carryover effect 

 (i) 

 

possible explanation: 

beneficial effect of B carries 

over into period 2 

 

 

 

 

Carryover effect 

 (ii) 

 

Direction of treatment effect  

different for different periods  

caused by carryover.  

 
 

(ii) is more serious, (i) is unlikely to be detected because of low power. 

 

period 1 period 2 

mean 
response Group 1  

Group 2  

A

B

A

B

A

A

B

Bmean 
response Group 1  

Group 2  

period 1 period 2 
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b) Period effect 

 

response in period 2 reduced  

for both treatments,  

i.e. patients generally  

improve so period 2  

values on average reduced.  

 

 

 

 

 

 

 

 

c) treatment effect 

 

 B better than A 

 

 

 

A 

B

A

B 

A 

B

A

B 

mean 
response 

mean 
response 

Group 1  

Group 2  

Group 1  

Group 2  

period 1 period 2 

period 1 period 2 
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6.3 Model 
 period 1 period 2 

group 1 A  Y11k B  Y12k 

group 2 B Y21k A  Y22k 

 

 response Yijk  for 

  group i (order); i=1,2 

  period j; j=1,2 

  patient k; k=1,2,...,ni . (n1=n2 in balanced case) 

Effects 

  — overall mean 

 A, B — treatment effects 

 1, 2 — period effects 

 A, B carryover effects (treatment x period interaction)   

k — random patient effect  N(0,2) (between patients) 

 ijk— random errors  N(0, 2) (independently) 

Identifiability 

A + B = 0 

1 + 2  = 0 
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Model 

 period 1 period 2 

group 1 +k+A+1+11k +k+B+2+A+12k 

group 2 +k+B+1+21k +k+A+2+B+22k 

 

 

If we take expected values, k and ijk disappear. 

Yijk = +k++++ijk 

E(Y11k) = +A+1 

E(Y12k) = +B+2+A 

 

To isolate ,  and  effects we consider sums and differences of 

the Yijk’s. 
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6.3.1. Carryover effect 

Compute  Tik = ½(Yi1k + Yi2k)  i.e. the average of the 2 values for 

patient k. 

Then T1k  N(+½A, 2+½2) and T2k  N(+½B, 2+½2) 

If A = B i.e. no (differential) carryover, T1k and T2k have identical 

Normal distributions.  

Thus we can test for equality of means of group 1 and group 2 

using a 2-sample t-test to establish whether  

 H0: A = 0 = B is plausible. 

i.e. use r
s s
n n

T T ~ t


2 2
1 2

1 2

1 2  

where s2
1  is the sample variance of the T1k so s

nˆvar(T ) 
2
1

11 , etc. and 

we take [conservatively] r=min(n1, n2) or use a more sophisticated 

formula. 
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[Note that our model does specify equal variances and so we 

could use the ‘pooled variance version’ of the t-test 

n n
T T ~ t
ˆvar(T T )

 



1 2

1 2
2

1 2

 

where (n )s (n )sˆvar(T T )
n n n n

   
      

2 2
1 1 2 2

1 2

1 2 1 2

1 1 1 1
2

 but it should 

make little difference in practice. 

 

Ex 6.1 (continued) 

   B  A   A  B 

  ni    55      54  

  iT  176.28  180.17 

  si   26.56    26.27 

 

so t = 
. .

. . .


2 226 27 26 56
54 55

180 17 176 28 0 769  which is clearly non-significant 

when compared with t54 and so the data provide no evidence of a 

carry-over effect. 

 

NB ‘pooled’ 2-sample  t = 
 . .

. . .
  




 2 254 26 27 53 26 56 1 1
107 55 54

180 17 176 28 0 769  

(little difference because the variances are almost equal anyway) 
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6.3.1.1 Notes 

 Test for carryover typically has low power since it involves 

between patient comparisons. 

 If there is a significant carryover effect (i.e. treatment x period 

interaction) then it is NOT SENSIBLE to test for period and 

treatment separately, so  

 a) plot out means and inspect  

 b) just use first period results and   

      compare A and B as a parallel group study. 

 If just first period results are used then the treatment comparison 

is between patients (so also of low power). 

 If there is a carryover then it means that the results of the second 

period are ‘contaminated’ and give no useful information on 

treatment comparisons — the trial should have been designed 

with a longer washout period. 

 NB we used the average of the two values for each patient (i.e. 

from period 1 and period 2) in describing the carryover test since 

then the model indicates this has a mean of  when there is no 

carryover.  The value of the t-statistic would be exactly the same 

if we used just the sum of the two period values — this is easier 

(avoids dividing by 2!) and this will be the procedure in later 

examples. 
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6.3.2 Treatment & period effects 
Consider Dik = Yi1k – Yi2k   i.e. within subject differences. 

Then D1k  N((A-B)+(1-2), 22)   group 1 and  

 D2k  N((B-A)+(1-2), 22)  group 2 

 

6.3.2.1 Treatment test 

 H0: A = 0 = B 

If this is true, then D1k and D2k have identical distributions so we 

can test H0 by a t-test for equality of means as before. 

D D
r

s s
n n

D D ~ t


2 2

1 2

1 2

1 2  

where now Ds2
1 is the sample variance of the differences D1k. 

Notice that 1D  is the difference between period 1 and period 2 

results averaged over those in group 1 and 2D  is the difference 

between period 1 and period 2 results averaged over those in 

group 2. Thus this test can be regarded as a two-sample t-test on 

period 1 – period 2 differences between the two groups of 

subjects. 
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Ex 6.1 (continued again) 

   B  A   A  B 

  ni    55      54  

  iD      5.04    –2.81 

  si   15.32    19.52 

 

We have  t 
. .

. ( . ) . 
 

2 215 32 19 52
55 54

5 04 2 81 2 33  

so p=0.024 when compared with t54 — significant evidence of 

treatment effects.  

 

 

 

[The pooled t-statistic is t 
 . .

. ( . ) .
  

 
 

 2 254 15 32 53 19 52 1 1
107 55 54

5 04 2 81 2 34 with a 

p-value of 0.021 when compared with t107 (i.e. no material or 

practical difference)] 

 



 Statistics in Clinical Trials; Chapter 6:– Crossover Trials  
 

NRJF, University of Sheffield, 16–27 April 2012 123  
 

6.3.2.2 Period test 

 Ho: 1 = 0 = 2 

If H0 is true then D1k  and –D2k will have identical distributions and 

so the test will be based on 

D D
r

s s
n n

D ( D ) ~ t 


2 2

1 2

1 2

1 2  

NB it is + in the numerator (not –) since it is still a 2-sample t-test 

of 2 sets of numbers the {(Y11k – Y12k); k=1,…,n1} from group 1 and 

the {(Y21k – Y22k); k=1,…,n2} from group 2. 

Notice that 1D  is the difference between Treatment A and 

Treatment B results averaged over those in group 1 and (– 2D ) is 

the difference between Treatment A and Treatment B results 

averaged over those in group 2. Thus this test can be regarded as 

a two-sample t-test on Treatment A – Treatment B differences 

between the two groups of subjects. 

 

Ex 7.1 (continued yet again) 

We have t = . ( . ) .
.
 


5 04 2 81 0 66

3 365
  

so no significant evidence of a period effect. 

 

[Same conclusion from the pooled test] 
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6.4 Analysis with Linear Models 
6.4.0 Introduction 

The analyses presented above using carefully chosen t-tests 

provide an illustration of the careful use of an underlying model in 

selecting appropriate tests to examine hypotheses of interest. 

However, to extend the ideas to more complicated cross-over trails 

with more treatments and periods it is necessary to use a more 

refined analysis with linear models.  The basic model for a 

multi-period multi-treatment trial for the response of patient k to 

treatment i in period j is: 

Yijk =  + i + j + ij + k + ijk 

where ijk ~ N(0, 2), k ~ N(0, 2), i = j = ij = 0 and where 

ij denotes the carryover effect which mathematically is identical to 

an interaction between the factors treatment and period.  Note that 

this model is slightly different from that given in §7.3 where the 

suffix i was used to indicate which group a patient belonged to and 

here it denotes the treatment received.   The essence of a 

cross-over trial is that not all combinations of i, j and k are tested. 

For example in a trial with two periods and two treatments only 

about half of the patients will receive treatment 1 in period 1 and 

for others the combination i = j = 1 will not be used.   Since the 

patient effect k is specified as a random variable this is strictly a 

random effects model which is a topic covered in the second 

semester in MAS473/6003 so we present first an approximate 

analysis with a fixed effects model which alters the assumption 

that the k are random variables and instead have the identifiability 

constraint k = 0. 
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6.4.1 Fixed effects analysis 
The data structure presumed is that the dataframe consists of 

variable response with factors treatment, period and patient.   

Dataframes provided in the example data sets with this course are 

generally not in this form. Typically, in the example data sets the 

responses in the two periods are given as separate variables so 

each record consists of responses to one subject, which is 

convenient for performing the two sample t-tests described in 

earlier sections and these will require some manipulation. 

The R analysis is then provided by: 
> crossfixed<-  
lm(result ~ period + treatment + patient + 
   treatment:period) 
> anova(crossfixed) 
This will give an analysis of variance with entries for testing with 

F-tests differences between periods, treatments and the carryover 

(i.e. treatmentperiod interaction). The p-values will be almost the 

same as those from the separate t-tests and will be identical if 

non-default pooled variance t-tests are used by including 

var.equal = TRUE in the t.test(.) command.  

Strictly speaking it has been presumed here that the numbers of 

subjects allocated to the various groups receiving treatments in the 

various orders have ensured that the factors period and treatment 

are orthogonal (e.g. equal number to two groups in a 2 periods 2 

treatments trial). If this is not the case then the above analysis of 

variance will give a ‘periods ignoring treatments’ sum of squares 

and a ‘treatments adjusted for periods’ sum of squares. This 

aspect of the analysis may be discussed more fully in a course on 

random and mixed effects linear models. 
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6.4.2 Random effects analysis 
The same data structure is used and here the library nlme for 

random effects analysis is required and a random effects linear 

model is fitted with lme(.) 

The R analysis is then provided by: 
> library(nlme) 
> crossrandom<- 
   lme(result ~ period + treatment   
    + treatment:period, random = ~ 1|patient) 
> anova(crossrandom) 
The analysis of variance table will usually be very similar to that 

provided by the fixed effects model except that the standard errors 

of estimated parameters will be a little larger (to allow for the 

additional randomness introduced by regarding the patients as 

randomly selected from a broader population) and consequently 

the p-values associated with the various fixed effects of treatment, 

period and interaction will be a little larger (i.e. less significant).  

 

6.4.3 Deferment of example 
An example is not provided here but analyses using the two forms 

of model will be given on the hours sleep data used in Q2 on Task 

Sheet 4. 
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6.5 Notes 

 If there is a substantial period effect, then it may be difficult to 

interpret any overall treatment difference within patients, since 

the observed treatment difference in any patient depends so 

much on which treatment was given first. 

 Some authors (e.g. Senn, 2002) strongly disagree with the 

advisability of performing carryover tests. In part, the argument 

is based upon the difficulty introduced by a two-stage analysis, 

i.e. where the result of the first stage (a test for carryover) 

determines the form of the analysis for the second stage (i.e. 

whether data from both periods or just the first is used). This 

causes severe inferential problems since strictly the second 

stage is conditional upon the outcome of the first. In practice, 

most pharmaceutical companies rely upon medical 

considerations to eliminate the possibility of any carryover of 

treatments.  In any case, the test for carryover typically has 

low power needs to be supplemented by medical knowledge 

— i.e. need expert opinion that either the two treatments 

cannot interact or that the washout period is sufficient, cannot 

rely purely on statistical evidence. 
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 We can obtain confidence intervals for treatment differences 

since 1 2½(D D )   N(A-B, ½2(n1
-1+ n2

-1)) and estimate 2 

with a pooled variance estimate or else say that the standard 

error of 1 2½(D D )  is  2 2
1 2

1 2

s s
n n¼   and use the approximate 

formula for [say] a 95% CI of  1 2½(D D )   2s.e.{ 1 2½(D D ) } 

(2 rather than 1.96 is adequate given the approximations 

made anyway in assuming normality etc). 

 If it is unsafe to assume normality the various two-sample 

t-tests above can be replaced by non-parametric equivalents, 

e.g. a Wilcoxon-Mann-Whitney test.  

The simpler non-parametric test, a sign test, is essentially 

identical to the case of binary responses considered in §7.4 

below. 

 Sample size & efficiency of crossover trials:–  

it can be shown that the number of patients required in a 

crossover trial is N = n(1–) where n= number required in each 

arm of a parallel group study and = correlation between the2 

measurements on each patient (assuming no carryover effect). 

Since  > 0 usually, need fewer patients in a crossover than in 

a parallel group study.  Sample size calculation facilities for 

cross-over trials are available in power.exe . 
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 Can be extended to > 2 treatments and periods, usually when 

intervals between treatments can be very short.  

e.g.    period  

    1 2 3  

    A B B  

    B A A  

 

    A  B C  

    C A B  

    B C A 

 In trials involving several treatments it is unrealistic to consider 

all possible orderings and so need ideas of incomplete block 

designs [balanced or partially balanced] to consider a 

balanced subset of orderings. (See MAS370 or MAS6011 

second semester). 

 Crossover trials are most suitable for short acting treatments 

where carryover effect is not likely, but usually not curative so 

baseline is similar in period 2. 
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6.6 Binary Responses 
The analysis of binary responses introduces some new features but is 

essentially identical in logic to that of continuous responses considered 

above. The key idea is to consider within subject comparisons as before. 

This is achieved by considering whether the difference between the 

responses to the two treatments for the same subject indicates 

treatment A is ‘better’ or ‘worse’ than treatment B. If the responses on 

the two treatments are identical then that subject provides essentially no 

information on treatment differences. 

 

 

6.6.1 Example: (Senn, 2002) 

A two-period double blind crossover trial of 12g formoterol solution 

compared with 200g salbutamol solution administered to 24 children 

with exercise induced athsma. Response is coded as + and – 

corresponding to ‘good’ and ‘not good’ based upon the investigators 

overall assessment. Subjects were randomised to one of two groups: 

group 1 received the treatments in the order formoterol  salbutamol; 

group 2 in the order salbutamol  formoterol. 

The results are given below: 
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group subject formoterol salbutamol preference

1 + + — 

2 – – — 

3 + – f 

4 + – f 

5 + + — 

6 + – f 

7 + – f 

8 + – f 

9 + – f 

10 + – f 

11 + – f 

 

 

 

 

 

group 1 

for sal 

 

12 + – f 

13 + – f 

14 + – f 

15 + + — 

16 + + — 

17 + + — 

18 + + — 

19 + + — 

20 – + s 

21 + – f 

22 + – f 

23 + – f 

 

 

 

 

 

group2 

sal  for 

24 + – f 
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To test for a difference between treatments we test whether the 

proportion of subjects preferring the first period treatment is associated 

with which order the treatments are given in, (c.f. performing a two 

sample t-test on the period 1 – period 2 responses). This test is 

sometimes known as the Mainland-Gart Test: 

 

 preference  

sequence first period second period total 

for  sal 9 0 9 

sal  for 1 6 7 

total 10 6 16 

 

 

The value of the Pearson chi-squared test statistic is 

(96 – 10)216/[10679] = 12.34 

which is clearly significant at a level <0.001 and so the data provide 

strong evidence of superiority of the treatment by formoterol. 
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To test for a period effect we similarly test whether the proportion of 

subjects preferring treatment A is associated with the order in which the 

treatments are given: 

 preference  

sequence formoterol salbutamol total 

for  sal 9 0 9 

sal  for 6 1 7 

total 15 1 16 

 

Now the test statistic is (91 – 60)216/[15179] = 1.37 and we 

conclude that there is no evidence of a period effect. 

 

6.7 Summary and Conclusions 

Possible effects that must be tested in a two-treatment two-period 

crossover trial (whether continuous or binary outcomes) are: 

 carryover:– test by two-sample test on average 

response over both periods 

 treatment:– test by two-sample test on differences of 

period I – period II results between the two groups of 

subjects 

 period:– test by two-sample test on differences of 

treatment A – treatment B results between the two 

groups of subjects. 
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If carryover (i.e. treatmentperiod interaction) is present then use 

only results from period I, in which case treatment comparisons 

are between subjects. A full crossover analysis gives a within 
subject comparison. 

 Use of a preliminary test for carryover is not 

recommended by some authorities and it is preferable to 

rely upon medical considerations to eliminate the 

possibility of a carryover. 

 If normality is assumed then the tests can be performed 

with two sample t-tests. These can be replaced with 

non-parametric equivalents such as a Wilcoxon-Mann-

Whitney test. 

 binary responses can be analyzed with a Mainland-Gart 

test which considers only those subjects exhibiting 

different responses to the treatments. 
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7. Binary Response Data 
7.1 Background 

Responses are often measured on a binary or categorical scale. 

Here we only look a the binary case, so we can represent the 

response of the ith patient by yi = 1 (success) or yi = 0 (failure). We 

can use standard Pearson 2 or Mantel-Haenszel tests but not all 

cross-classified tables are appropriate for application of these 

hypotheses tests of independence of classification or 

homogeneity. In some cases it is appropriate to consider different 

statistics calculated from the table to reflect on the key question of 

interest there are further techniques for special designs (e.g. 

paired observations) or observational studies or if we have 

additional data, e.g. on covariates (such as different centres). 

 

7.2. Combining trials and the Mantel-Haenszel Test 
We may have results from several trials or centres. How should we 

combine them? 

e.g. For a binary response of treatment vs placebo 

 e.g. trial j (for j=1,2,.....,N) 

 Successes Failures  

Treatments Y1j n1j–Y1j n1j 

Placebo Y2j n2j–Y2j n2j 

 tj nj–tj nj 
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It can be dangerous to collapse these N 22 separate tables into 1 

single 22 table: 

 centre 1    centre 2  

 S F    S F  

trt 30 70 30%S  trt 210 90  70%S     

plac 120 180 40%S  plac 80 20  80%S     

 150 250    290 110  

 

looks like placebo better?   looks like placebo better? 

 (2
  = 3.2, n.s.)     (2

  = 3.76, n.s.) 

but if we collapse the two tables into one: 

 

 centre 1 & 2   

 S F   It looks like the 

trt 240 160 60%S  treatment is better; 

plac 200 200 50%S (2
 =8.08, highly significant) 

 440 360   

 

This is known as Simpson’s Paradox — it is misleading to look 

at margins of higher dimensional arrays, especially when there are 

imbalances in treatment numbers. 

 

The root cause of the paradox here is that the overall success 

rates in the two centres is markedly different (30–40% in centre 1 

but 70–80% in centre 2) so it is misleading to ignore the centre 

differences and add the results together from them. 
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7.3 Mantel-Haenszel Test 
One way of combining data from such trials is using the 

Mantel-Haenszel test (but this does not necessarily overcome 

Simpson’s Paradox — it only avoids differences BETWEEN 

trials and assesses evidence WITHIN trials). 

Consider a single 22 table: 

 Successes Failures  

Treatments Y1 n1–Y1 n1 
Placebo Y2 n2–Y2 n2 

 t n–t n 

 

and assume Yi  B(ni,i) ; i=1,2 

 interested in H0: 1 = 2  

 

Fisher’s exact test considers 

P(y1,y2|y1+y2=t) i.e. conditions on the total number of successes 

If 1 = 2 then P(y1,y2|y1+y2=t) =

n
y

n
t y
n
t

1

1

2

1

























  

(i.e. a hypergeometric probability) 

   E(Y1)=n1t/n and V(Y1)=n1n2t(n-t)/n2(n-1) 
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So, if we have large margins, a means of analysis is to say that 

 

TMH = [Y1-E(Y1)]2/V(Y1) 1
2 under H0 

 

If TMH > 1
2
;1- then p <  and there is a significant treatment 

difference. 

 

7.3.1 Comments 

1. Asymptotically equivalent to usual 2 test. 

2. Known as the Mantel-Haenszel or [very misleadingly  as a 

Randomization test]. 

3. Does not matter whether you use Y1, Y2, n–Y1 or n–Y2. 

4. The extension to several tables is simple. We use W=Y1j 

and under H0: 1 = 2 in each table, i.e. 1j=2j, i.e. response 

ratio equal within each study we have E(W)= E(Y1j) and 

V(W)=V(Y1j) and  [W-E(W)]2/V(W) 1
2 under H0 again. 

5. This test is most appropriate when treatment differences are 

consistent across tables (we can test this but it is easier in a 

logistic regression framework — see later) — the test pools 

evidence from within the different trials whilst avoiding 

differences between trials. 
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7.3.2 Possible limitations of M-H test 

 Randomness dubious 

 reporting bias 

 not clear that I is the same for all trials. 

 

7.3.3 Relative merits of M-H & Logistic Regression approaches 
The Mantel-Haenszel test is simpler if one has just 2 qualitative 

prognostic factors to adjust for and wishes only to assess 

significance, not magnitude, of a treatment difference. The logistic 

approach (see below) is more general and can include other 

covariates, further, it can test whether treatment differences are 

consistent across tables. The M-H test is not very appropriate for 

assessing effects if tables are inhomogeneous, i.e. if treatment 

differences are inconsistent across tables, and must be used with 

care if success rates differ markedly (i.e. leading to Simpson’s 

Paradox). 
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7.3.4 Example: pooling trials 
A research worker in a skin clinic believes that the severity of 

eczema in early adulthood may depend on breast or bottle feeding 

in infanthood and that bottle fed babies are more likely to suffer 

more severely in adulthood. Sufferers of eczema may be classified 

as ‘severe’ or ‘mild’ cases. The research worker finds that in a 

random sample of 20 cases in his clinic who were bottle fed, 16 

were ‘severe’ whilst for 20 breast fed cases only 10 were ‘severe’. 

How do you assess the research workers belief? 

 

In a search through the recent medical literature he finds the 

results, shown below, of two more extensive studies which have 

been carried out to investigate the same question. Assess the 

research worker’s belief in the light of the evidence from these 

studies. 

 Bottle fed Breast fed 

study severe mild severe mild 

2 34 16 30 20 

3 80 34 48 50 
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Analysis 

Study 1 

 Severe Mild  

Bottle 16 4 20 

Breast 10 10 20 

 26 14 40 

 

Y1 =number of response ‘severe’ on bottle fed. 

Under H0 response ratios equal: 

 E(Y1) = 20x26/40 = 13 

 V(Y1) = 20x20x26x14/40x40x39 = 2.333 

So Mantel-Haenszel test statistic is 

   (16-13)2/2.333 = 3.86 > 1
2

;0.95 = 3.84 

and so is just significant at 5% level, i.e. more severe cases on 

bottle feed 
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Study 2 

 Severe Mild  

Bottle 34 16 50 

Breast 30 20 50 

 64 36 100 

 

 E(Y2) = 50x64/100 = 32 

 V(Y2) = 5.8182 

M-H test statistic =0.687,  p > 0.05, n.s. 

 

 

Study 3 

 Severe Mild  

Bottle 80 34 114 

Breast 48 50 98 

 128 84 212 

 

 E(Y3) = 68.83, V(Y3) = 12.6668,  

 M-H test statistic = 9.850, p < 0.005 
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Combining all 3 studies 

Use W = Y1+Y2+Y3 .  

Under H0: response ratios equal, 

 W=130, E(W)=113.83, V(W)=20.8183 so 

 M-H test statistic = 12.56, p < 0.0005, highly significant 

Caution: the response ratios in the three studies differ quite a lot  

  (80%, 68% and 70% in studies 1, 2 and 3) 

 

For interest, combining all 3 tables gives: 

 Severe Mild  

Bottle 130 54 184 

Breast 88 80 168 

 218 134 352 

 

giving an Pearson 2–statistic of 12.435, p < 0.0005.  It might also 

be noted that the M-H statistic calculated from this table is slightly 

different, 12.400. These small differences are inconsequential in 

this case. The combined M-H statistic tests for association within 

strata, i.e. within studies, and so avoids differences between 

strata, thus avoiding Simpson’s paradox (rather than overcoming 

it). 

 

Note: We could also calculate the ordinary Pearson chi-squared 

values for each of these tables; the results are very close to 

(actually slightly greater than) the Mantel-Haenszel values since 

the numbers are large. 
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7.3.5 Example of Mantel-Haenszel Test in R 
 

The function for performing a Mantel-Haenszel test in R is 

mantelhaen.test(). The Help system gives full details and 

examples. 

 

The data are from the example 8.1 in §8.3.4 on page 135 

The first example shews how to set up R to run a MH test on just one 

table by creating a factor z which has just one level. 

 

 
> x<-factor(rep(c(1,2),c(20,20)),labels=c("bottle","breast")) 
> y<-factor(rep(c(1,2,1,2),c(16,4,10,10)),labels=c("severe","mild")) 
> z<-factor(rep(1,40),labels="study 1") 
> table(x,y,z) 
 
, , study 1 
       severe mild  
bottle     16    4 
breast     10   10 
> mantelhaen.test(x,y,z,correct=F) 
 
Mantel-Haenszel chi-square test without continuity correction 
 
data:  x and y and z  
Mantel-Haenszel chi-square = 3.8571, df = 1 
, p-value = 0.0495  
 
> 
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The second example shews how to calculate the MH statistic for all 

three tables combined. 

 
 
> x<-factor(rep(c(1,2,1,2,1,2),c(20,20,50,50,114,98)), 
+ labels=c("bottle","breast")) 
> y<-factor(rep(c(1,2,1,2,1,2,1,2,1,2,1,2), 
+ c(16,4,10,10,34,16,30,20,80,34,48,50)), 
+ labels=c("severe","mild")) 
> z<-factor(rep(c(1,2,3),c(40,100,212)), 
+ labels=c("study 1" ,"study 2","study 3")) 
> table(x,y,z) 
 
, , study 1 
       severe mild  
bottle     16    4 
breast     10   10 
 
, , study 2 
       severe mild  
bottle     34   16 
breast     30   20 
 
, , study 3 
       severe mild  
bottle     80   34 
breast     48   50 
> mantelhaen.test(x,y,z,correct=F) 
 
 Mantel-Haenszel chi-square test wit 
hout continuity correction 
 
data:  x and y and z  
Mantel-Haenszel chi-square = 12.5593, df =  
1, p-value = 0.0004  
 
> 
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7.4 Observational Studies 
7.4.1 Inroduction 

In epidemiological studies where it is not possible to control 

treatments or other factors administered to subjects inferences 

have to be based on observing characteristics and other events on 

subjects. For example, to investigate the effect of smoking on 

health (e.g. heart disease) cases of subjects with heart disease 

might be collected. These would be compared with controls who 

do not exhibit such symptoms but are otherwise similar to the 

cases in general respects (e.g. age, weight etc.) and the incidence 

of smoking in the two groups would be compared. This is an 

example of a retrospective study. A different form of 

observational study is a prospective study where a cohort of 

subjects who are known to have been exposed to some risk factor 

(e.g. a very premature birth) and are followed up through a period. 

They are then observed at some later date and the incidence of a 

condition (e.g. school achievement very far below average) is 

assessed.   In such studies the numbers of observations is 

typically very large since the incidence of the condition is often 

rare. It would be possible to use a chi-squared or a Mantel-

Haenszel test for comparing the proportions but this would not be 

informative, either because with such large numbers of subjects 

the statistical test is very powerful and so return a highly significant 

result without saying anything about the magnitude of the effect or 

because the incidence is so rare that expected numbers in some 
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cells are unduly low.  Instead such observational studies are more 

traditionally analysed by estimating quantities that are of direct 

interpretability (odds ratios and relative risks) and they are 

assessed by calculating confidence intervals for their true values 

using formulae giving approximations to their standard errors. 

7.4.2 Prospective Studies — Relative Risks 
Prospective studies follow a group of subjects with different 

characteristics to see if an outcome of interest occurs.   These 

would be used where the characteristic is not a ‘treatment’ that can 

be administered to a randomly selected group of subjects but 

some ‘risk factor’ such as very low birth weight or more than one 

month premature birth or blood group. The outcome may be some 

feature which occurs at some time later.  The analysis would be 

based on calculating the risks of developing the feature for the 

different groups and, in the case of two outcomes (positive and 

negative say) and two groups (exposed and non-exposed say) 

calculating the relative risks. 

 

 

 Outcome   
 Positive Negative Total 
Exposed a b a+b 
Non-exposed c d c+d 

 

 

The risk of a positive outcome for the exposed group is a/(a+b) 

and for the non-exposed group it is c/(c+d).  The relative risk is 

the ratio of these two 
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 a /(a b) a(c d)RR
c /(c d) c(a b)

 
 

 
 

and we compare this with the value 1 (the RR if there is no 

difference in risks for the two groups) by using its standard error.  

 

The formula for the standard error of  log e(RR) is 

 

 1 1 1 1
e a a b c c dS.E.{log (RR)}=      
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7.4.2.1 Example 
The data are taken from a study of ‘small-for-date’ babaies who 

were classifie as having symmetric or asymmetric growth 

retardation in relation to their Apgar score. 

 Apgar < 7   

 Yes No Total 

Symmetric 2 14 16 

Asymmetric  33 58 91 

 

The calculations give RR=0.3447, loge(RR) = –1.0651,  

s.e.(loge(RR)) = 0.6759. 

A 90% CI for loge(RR) is –1.0651 ± 1.6450.6759 =  

(–2.1769, 0.0467)and taking exponentials of this gives a 90% CI 

for the RR as (0.11, 1.05). Since this interval contains 1 there is no 

evidence at the 10% level of a difference in risk of a low Apgar 

score between the two groups. 
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7.4.3 Retrospective Studies — Odds Ratios 
Retrospective studies identify a collection of cases (e.g. with a 

disease) and compare these with respect to exposure to a risk 

factor with a group of controls (without the disease).  The 

selection of the subjects is based on the outcome and not the 

characteristic defining the group as with prospective studies.  

 Cases  Controls  

Exposed a b 

Non-exposed c d 

Total a+c b+d 

 

It is not sensible to calculate the risk of ‘being a case’ (a/(a+b)) 

since this can apparently be made any value just by selecting 

more or fewer controls which would increase or decrease b but not 

any other value. 

Instead it is sensible to look at the odds of exposure for the cases 

and for the controls and look at the ratio between these. If 

exposure is not a risk factor for being a case then this odds ratio 

will be close to 1. As before there is a simple formula for the 

standard error of the loge of the odds ratio  

 a / c adOR
b / d bc

    

and 
1 1 1 1

e a b c dS.E.{log (OR)}=     
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7.4.3.1 Example 

The following gives the results of a case-control study of erosion of 

dental enamel in relation to amount of swimming in a chlorinated 

pool. 

 

 Enamel erosion  

Swimming 

per week 

Yes  No  

 6 hours 32 118 

< 6 hours 17 127 

 

The calculations give OR=2.0259, s.e.(loge(RR))=0.3262 and so a 

95% for the log odds ratio is (0.0666, 1.3454) and the confidence 

interval for the odds ratio itself is thus (1.0689, 3.8397) which 

excludes the value 1 and so provides evidence at the 5% level of a 

raised risk of dental erosion in those swimming more than 6 hours 

a week. 
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7.5 Matched pairs 
7.5.1 Introduction 

In the comparison of two treatments A & B, suppose each patient 

receives both treatments (in random order), e.g. a crossover or 

matched-pair trial. We then observe pairs: 

    (yi1, yi2) 
      
  response to A     response to B 
  

of the form (0, 0), (0, 1), (0, 1), (1, 1), (1, 0), (1, 1), ........  

e.g. Rheumatoid arthritis study, two treatments A & B. 

Response caused? 1=yes, 0=no 

Could present results as: 

 

  response  

  yes no  

treatment A 11 37 48 

 B 20 28 48 

 

  and then it is tempting to analyse this as  

  an ordinary 22 table with a 2-test. 

 

This  INVALID  since it ignores the double use of each patient 

(there are only 48 independent subjects in the table not 96). 
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A more useful summary is  

  B  

  yes no  

A yes 8 3 11 

 no 12 25 37 

  20 28 48 

 

A suitable test for what is really of interest (treatment difference) — 

not ‘no association’) is: 

 

7.5.2 McNemar’s Test 
 

Ignore (1,1) and (0,0), use the unlike pairs only. If no treatment 

differences exist, then the proportions of (1,0)’s (say) out of the 

total number of (1,0)’s and (0,1)’s should be consistent with 

binomial variation with p=½. 

In example 

 There are 3 (1,0)’s out of a total of 15 unlike pairs. 

i.e. significance probability =  2
15 1

2
15

0

3










 xx
 =0.035 which 

is significant at the 5% level. 

 

For larger n use the Normal approximation 

   ( )10 01
2

10 01

n n
n n








  

 

Note: We have not used the data from subjects where the 

responses were the same, i.e. subjects for whom both treatments 
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produced successes or both failures. This is sensible since these 

subjects provide no evidence on treatment differences, even 

though intuitively the results from these subjects might suggest 

that the two treatments are equivalent. 
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7.6 Logistic Modelling 
7.6.1 Introduction 

(for more details of logistic models see PAS372 or PAS6003)  

 

Logistic modelling has become a very popular way of handling 

binary data and the analyses can be handled in most standard 

statistical packages. 

 

 In the clinical trials context define: 

 For patient i, outcome = Yi = 0 (failure) or 1 (success). 

 treatment xi = 0 (placebo) or 1 (treatment) 

 

Then an alternative parameterization of the 22 set up is 
0 1 i

0 1 i

X

XiP[Y 1]
1

e
e

 

  


   and    
0 1 iXi i

1P[Y 0] 1 P[Y 1]
1 e     


 

i.e. on placebo 

   
0

0IiP[Y 1]
1

e
e



 


 

and on treatment 
0 1

0 1iP[Y 1]
1

e
e

 

  


 

We can see that  i
0 1 i

i

P[Y 1]ln x
P[Y 0]
 

     
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The model extends naturally to include other prognostic factors or 

covariates:  ln [ ]
[ ]

P Y
P Y

i

i












1
0

= 0+1xi1+2xi2+3xi3+.....+pxip 

         = 0+‘ xi 

 

where the xij can be continuous or discrete or dummy. 

    P Y x
P Y x

i i

i i

[ | ]
[ | ]




1
0

= exp{0+‘ xi} 

 

In this case P(Yi=1) = P(success) = 
 

  
0

01






'

'

x

x i
e

e
 

and  ln [ ]
[ ]

lnP Y
P Y

i

i

i

i




















 

1
0 1




0+ xi 



 Statistics in Clinical Trials; Chapter 7:– Binary Response Data.  
 
 

NRJF, University of Sheffield, 16–27 April 2012 159  
 

7.6.2 Interpretation 
For comparative trials 

ln [ ]
[ ]

P Y
P Y

i

i












1
0

=0+   0  +2xi2+3xi3+.....+pxip     if xi1=0,  

 i.e. on placebo 

ln [ ]
[ ]

P Y
P Y

i

i












1
0

=0+ 1 +2xi2+3xi3+.....+pxip        if xi1=1, 

 i.e. on treatment 

so if 1>0, odds in favour of success are greater in treatment group 

and if 1<0, odds in favour of success are greater in placebo group 

Similar interpretations for other factors: 

j > 0  P(success)  as xj  and P(success)  as xj    

J < 0  P(success)  as xj  and P(success) as xj . 
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7.6.3 Inference 

0 and  are estimated by Maximum Likelihood: 

L(0,)=



n

1i

y1
i

y
i

ii )1( ;  

ln L(0,)=yiln{i/(1–i)}+ln (1–i) 

ln L(0,) = (0,) =yi(0+‘ xi) – ln[1+ exp(0+'xi)] 

Standard iterative methods (e.g. Newton-Raphson)   

give m.l.e.’s 0, 









 
0 1 1
   ( ) ; ( )y x yi i

n

i
i i i

n
 

Estimated standard errors of these estimates can be obtained from 

the diagonal of the estimated variance matrix  

1

ˆ,ˆ@0

2
0

0
),(

Eˆ
ˆ

râv









































   
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R or MINITAB or SAS or SPSS or S-PLUS will fit the model and give 

estimates and standard errors. We can test significance in terms 

of:– 

a) partial z-test 

 H0: j = 0 

test compares  


var( )





j

j

 with N(0,1) %-points  

(ignore strict need for t-test) 

b) likelihood ratio 

 compare 2|full model — reduced model with =0| with 1
2  

where  is the maximized log likelihood (or deviance) 
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7.6.4 Example (Pocock p.219) 
A trial to assess the effect of the treatment clofibrate on ischaemic 

heart disease (IHD). Subjects were men with high cholesterol, 

randomized into placebo and treatment groups. 

Prognostic factors (i.e. factors which also affect risk of IHD and 

which can be identified in advance) were: 

age; smoking; father’s ‘history’; systolic BP; cholesterol 

 

Response: Yi : ‘success’ (!!) = patient subsequently suffers IHD 

Each patient has a certain probability pi of achieving a response. pi 

is the probability of getting IHD. Define the following multiple 

logistic model for how pi depends on the prognostic variables: 

ln ln [ ]
[ ]

p
p

P suffers IHD
P does not

i

i1






 









= 0+1xi1+2xi2+3xi3+.....+6xi6 

where 0,....,6 are numerical constants called logistic coefficients. 

This is sometimes written logit(pi) = 0+1xi1+2xi2+3xi3+.....+6xi6. 

 

x1=0 (placebo), 1 (clofibrate) 

x2=ln(age) 

x3=0 (non-smoker),1 (smoker)  

x4=0 (father alive), 1 (dead) 

x5=systolic BP in mm Hg   

x6=cholesterol in mg/dl 
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Apply maximum likelihood to estimate values of I (I=0,1,...6): 

 

 Numerical variable logistic coef   

factor xj j z-value 

1:treatment 0=placebo,1=treatment –0.32 –2.9 

2:age ln(age)   3.0   6.3 

3:smoking 0=non-smok, 1=smoker   0.83   6.8 

4:father’s hist 0=alive, 1=dead   0.64   3.6 

5:systolic BP Systolic BP in mm Hg   0.011   3.7 

6:cholesterol Cholesterol in mg/dl   0.0095   5.6 

 constant term 0 = –19.60  

 

 –1(.005) = z.005 = –2.58  z.025 = –1.96 

  (1% level)    (5% level) 

Treatment: significant, p < 0.01; 1 < 0;     

Probability of IHD is smaller on treatment than on placebo 

 

Prognostic factors: all five significant (p < 0.01); all have positive 

m.l.e.’s,  probability of IHD increases with age, smoking, ‘poorer 

heredity’, high blood pressure, high cholesterol. 
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Another useful way of describing the importance of each factor is 

to look at odds ratios. The odds ratio is approximately equal to 

the relative risk if the probability of the event is small and 

consequently the term relative risk is often [technically mistakenly] 

used in this context. 

 e.g. the odds ratio of getting IHD on clofibrate compared with 

placebo is the ratio of odds: 

1

1

1

1

[ 1 | 1]
[ 0 | 1]

[ 1 | 0]
[ 0 | 0]

 
 

 
 

P Y x
P Y x

P Y x
P Y x

 

   = exp{1} 

The estimated odds ratio is e–0.32 = 0.73 < 1 

i.e. odds of getting IHD are 27% lower on clofibrate after allowing 

for the other prognostic factors. 

The standard error of 1 is 0.11 (= –0.32/–2.9, but actually 

obtained direct from diagonal of information matrix [not given 

here]). So approximate 95% confidence limits for 1 are   

–0.32 ± 2x0.11 = –0.10 and –0.54. Hence exp{1} has 95% 

confidence limits e–0.1 and e–0.54 = 0.90 and 0.58 so that 95% 

confidence limits for the reduction due to clofibrate in odds of 

getting IHD are 10% and 42%.  

Similar calculations for smoking show 95% limits for the increase 

in odds of getting IHD for smokers are 80% and 193%. 
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7.6.5 Interactions  

Interaction terms would be handled by creating a new variable as 

the product of the treatment and the covariate values. In the 

example above the treatment is coded as 0 for placebo and 1 for 

clofibrate, so the value of this interaction term would be 0 for all 

subjects receiving placebo and the same as the covariate for those 

on clofibrate.   In the example above Treatment is variable x1 and 

loge(age) is variable x2 and there are six variables in all. We create 

a new variable x7 = x1x2 and then our model is  

 logit(pi) = 0+2xi2+3xi3+.....+6xi6 for placebo, and 

 logit(pi) = 0+1xi1+(2+7)xi2+3xi3+.....+6xi6 for clofibrate 

and 7 reflects the interaction effect, (note that x7 is identical to x2 

for those on clofibrate but 0 for those on placebo). 

Exactly the same method is appropriate for handling interactions 

between two continuous covariates and between two 2-level 

factors.  Interactions involving a k-level factor can only be handled 

by converting the factor into k–1 dummy binary variables. In this 

case the interaction term has k–1 degrees of freedom if it is a k-

level factorcovariate interaction or (k–1)(j–1) degrees of freedom 

for an interaction between a k-level and a j-level factor.   This also 

means that the separate parts of the chi-squared statistic must be 

combined before assessing significance. However, be cautious in 

including interactions if there is no a priori reason to expect them 

since problems of multiplicity can arise, especially if the number of 

levels of a factor is large. 
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7.6.6 Combining Trials 

Within the context of combining trials we might keep 1 the same 

in each trial, but allow 0 to vary to reflect possible differences in 

trial j conditions: 

 

 i.e.  ln
[Y ]
[Y ]

P
P

ij

ij

















1
0

=j+1xij 

  

e.g. 3 clinics 

 

   =0+1xi1+2xi2+3xi3 

 

where the last two terms are the clinic coding xi2 and xi3 are 

dummy variables, i.e. 

 

    (xi2, xi3) = (0,0) for clinic 1 

    (1,0) for clinic 2 

    (0,1) for clinic 3 

 

 

which gives 0+1xi1 for clinic 1 

   (0+2)+1xi1 for clinic 2 

   (0+3)+1xi1 for clinic 3 
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7.7 Summary and Conclusions 

 Combining trials can give paradoxical results if 

response rates and sample sizes are very different in 

the trials (Simpson’s Paradox) 

 Simpson’s paradox can be resolved by more 

sophisticated modelling allowing for a separate ‘trial 

effect’ 

 The Mantel-Haenszel test provides an alternative way 

of analysing 22 tables which makes it easier to 

combine results from different trial but which does not 

overcome Simpson’s Paradox but avoids it. 

 Care needs to be taken in analysing matched pairs 

binary responses. McNemar’s test uses only the 

information from unlike pairs 

 Logistic Regression allows the log-odds to be 

modelled as a linear model in the covariates. 

 Logistic models can be implemented in most standard 

statistical packages 

 Logistic models allow relative risks to be estimated 

(including confidence intervals). 

 Positive coefficients in a logistic model indicate that the 

factor increases the risk of the ‘success’ 
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