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Relationships Between Variables
 PCA:

unsupervised technique for investigating 

structure in a single set of observations

• only indirect information on variables 

• e.g. interpretation of loadings of PCs

– (contrast between size & shape variables 

in BM Mummy Pots example)
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 LDA
 supervised technique for 

investigating relationship 
between one categorical variable & others

• interest in predicting the category from others
• also interest in relationship between 

categories and other variables
– which variables distinguish between groups?
– examine discriminant functions (crimcoords) loadings

 Note:
 for LDA must have n > p 
but for PCA can have n > p or n < p

• depends whether matrix inversion is involved
» (correlation/covariance)
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 Prediction or relationship?
 n > p or n < p?

 Compare univariate regression of Y on X
– (Y a random variable, X a fixed variate)

 E[yi] =  + xi
• used for modelling the dependence of Y upon X
•  used for predicting value of y for a [new] value x
• If both X and Y are random variables then 

use the same model conditional on value of X
• model extends to p X-variables (provided n > p) 

(& is essentially identical to LDA if Y is categorical)

 Model for predicting X from Y is different
 If interest is in relationship between then 

we examine the correlation between X & Y
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 Prediction or relationship?
n > p or n < p?

 Collection of techniques available
Multivariate Regression 

• predicting a multivariate a multivariate random 
variable Y from a multivariate variable X

– Y dependent, X independent 
» requires “n > p”

Canonical Correlation 
– relationship between two multivariate R.V.s X & Y

» requires “n > p”

Partial Least Squares
• prediction or relationship, does not require “n > p”
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 Multivariate Regression

Essentially identical to univariate regression

• model E[Yi] = X,

• Confidence regions for  obtained from

under H0:  = 0

– can get individual coefficients from univariate regressions

– but not the simultaneous confidence regions as easily

• (see lecture notes for an example)

1ˆ ˆ ˆ(X X) X Y, (Y X ) (Y X ) /(n q 1)           

1 2ˆ ˆˆ( ) ( ) ~       
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 Canonical Correlation
Two variables X and Y of dimensions p & q

• aim is to find a linear combinations 
of the X & Y variables, aX & bY, 
which have maximum correlation

• maximize XY = aXYb/{aXXabYYb}
– solve by The Same Procedure as Last Time

– converting to an eigenanalysis problem 

» (constraining the numerator = 1)

• obtain sets of canonical variates
– used to display data 

– examination of loadings allows 
interpretation of X & Y relationship 

» identical to crimcoords if Y is categorical
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 Example:
X = (head length, head width [of 1st sons])
Y = (head length, head width [of 2nd sons])

• a1 = (0.70, 0.72), b1 = (0.74, 0.67) , 
is first canonical variate with correlation 1 = 0.79

– both of these reflect size

• a2 = (0.71, 0.71), b1 = (0.71, 0.71)
is 2nd canonical variate with correlation 2 = 0.05 

– both of these reflect shape

 Interpretation:
• greatest similarity between brothers 

is in head size but there is little relationship 
between their head shapes
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No general reason why canonical variates
in CCA should reflect size, even if variables 
are all linear measurements of dimension

• unlike PCA and the Perron-Frobenius theorem

 see notes for more complex example 
relating measures of depression & health 
to socio-demographic measures

other common uses: questionnaire analysis 
• evaluation of a product and measures about people

– socio-demographics:- age, income, postcode grading
– opinions of hair-spray:- lustre, bounce, glossiness, ….

• allows insight into market segmentation
revealed by plot on canonical variates

– cf plots on PCs revealing groupings
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 Partial Least Squares 
» (for n < p and n << p problems)

Comments (see also lecture notes)
• key idea is to replace correlation matrices 

by covariance matrices so ‘avoiding’ inversion 
of singular variance matrices

– again look for linear combinations of variables
– derivation is algorithmic / iterative 

» (not a solution of an eigenanalysis problem???)

• implementation easy in R 

– using plsgenomics library and routines 

pls.regression(.) & pls.lda(.)
• see recent MSc dissertations by Maria Taboada, 

Rich Jacques, Lu Zou, James Bentham, …. 
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Other techniques for n < p discrimination
need some method of preliminary 

dimensionality reduction

 take first k principal components (k < n)
• rationale:-

– some PCs may be associated with components of 
variance attributable to differences between groups

• seems to be useful if p is ‘medium range’ (<< ~100)

• doesn’t work well if n << p (e.g. n ~ 50, p ~ 1000+)
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Other techniques for n < p discrimination
 instead of ranking PCs 

by variances on the PCs 
– i.e. by the eigenvalues

rank them by some other criterion 
reflecting group differences such as aiBai/I

– B the between groups covariance matrix

• this (and also ordinary PCs) are particular cases 
of the Karhunen-Loève transformations

• these give interpretation of loadings etc, 
i.e. some form of analysis of differences

 see also techniques of feature extraction
• in Pattern Recognition areas of Machine Intelligence 

literature
– typically no analysis by examination of loadings


