
Statistical Modelling & Computing

3. Classical Univariate Statistics

3.1. Standard tests

Standard one– and two– sample Normal theory and non-parametric classical

univariate tests are readily available in R and S-plus.

Many of these are generic functions and what is returned depends on the

context, i.e. whether it is a one-sample or two-sample test depends on

whether you give the function t.test() the names of one or two samples.

Example: (Data shoes in MASS library but note how to enter the data direct

into vectors A and B)

> data(shoes)
> shoes
$A
 [1] 13.2 8.2 10.9 14.3 10.7 6.6 9.5 10.8 8.8 13.3
$B
 [1] 14.0 8.8 11.2 14.2 11.8 6.4 9.8 11.3 9.3 13.6

Or enter the data directly:
> A<- c(13.2, 8.2, 10.9, 14.3, 10.7, 6.6, 9.5, 10.8, 8.8, 13.3)

> B<- c(14.0, 8.8, 11.2, 14.2, 11.8, 6.4, 9.8, 11.3, 9.3, 13.6)

> t.test(A,B)

 Welch Two Sample t-test

data: A and B
t = -0.3689, df = 17.987, p-value = 0.7165
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 -2.745046 1.925046
sample estimates:
mean of x mean of y
 10.63 11.04

NRJF, University of Sheffield 47

Statistical Modelling & Computing

> t.test(A-B)

 One Sample t-test

data: A - B
t = -3.3489, df = 9, p-value = 0.008539
alternative hypothesis: true mean is not equal to 0
95 percent confidence interval:
 -0.6869539 -0.1330461
sample estimates:
mean of x
 -0.41

> t.test(A,B,paired)
Error in all(arg == choices) : Object "paired" not found
> t.test(A,B,paired=TRUE)

 Paired t-test

data: A and B
t = -3.3489, df = 9, p-value = 0.008539
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 -0.6869539 -0.1330461
sample estimates:
mean of the differences
 -0.41

The full list of tests available is

binom.test chisq.test cor.test fisher.test

friedman.test kruskal.test mantelhaen.test mcnemar.test

prop.test t.test var.test wilcox.test

chisq.gof ks.gof

And details can be found in help().

NRJF, University of Sheffield 48

Statistical Modelling & Computing

Note that the results of each of these functions is an object and individual

elements of these objects can be accessed separately by using a $ sign with
name-of-ofbject$name-of-element:

> t.test(A-B)$p.value
[1] 0.00853878

> t.test(A-B)$conf.int
[1] -0.6869539 -0.1330461
attr(,"conf.level")
[1] 0.95

Again, a list of elements of each of these tests is given in the help system.

Some of these tests depend upon assumptions on the underlying distribution

of the data and others do not. For example the t-test presumes data are

normally distributed but the non-parametric Wilcoxon does not. Both of them

can test whether the measures of location are the same for two samples or

whether the measure has a specific value (e.g. 0) for one sample, but the t-

test works in terms of the mean as the measure of location and the Wilcoxon

uses the median as the measure.

Not only is the median more resistant to outliers but the probability argument

used to obtain the p-value is based on combinatorial arguments rather than

one assumptions about probability distributions of the data.

NRJF, University of Sheffield 49

Statistical Modelling & Computing

Example (shoe data again, paired test):
> t.test(A-B)

 One Sample t-test

data: A - B
t = -3.3489, df = 9, p-value = 0.008539
alternative hypothesis: true mean is not equal to 0
95 percent confidence interval:
 -0.6869539 -0.1330461
sample estimates:
mean of x
 -0.41

> wilcox.test(A-B)

 Wilcoxon signed rank test with continuity
correction

data: A - B
V = 3, p-value = 0.01431
alternative hypothesis: true mu is not equal to 0

Warning message:
Cannot compute exact p-value with ties in: wilcox.test(A
- B)

Note that the Wilcoxon returns a larger p-value than the t-test, this is largely

because the t-test is assuming more about the data and so you ‘get more out

of the analysis’ (more in ⇒ more out). This is fine provided the assumptions

made for the t-test are sensible. It is of course possible to check some of the

assumptions (e.g. using a normal probability plot for checking normality) but

with small samples it is difficult to detect non-normality.

NRJF, University of Sheffield 50

Statistical Modelling & Computing

> qqnorm(A-B)

> qqline(A-B)

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

-1
.0

-0
.

-0
.

0

N ormal Q-Q P lot

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

.2

2

6

This plot suggests that there are at least doubts about normality for these

data.

One solution is to use only ‘non-parametric’ methods, but even these make

some assumptions.

An alternative is to use permutation methods or simulation techniques, some

of which come under a general heading of Monte Carlo Methods. The
Bootstrap is a particular form of simulation technique.

3.2 The Bootstrap

NRJF, University of Sheffield 51

Statistical Modelling & Computing

3.2.1. Introduction

Suppose we have estimated the median by the sample median from a set of

data and want to know how variable this estimate is. If we knew what the

true density was then we could simulate more samples from the same

density, taking samples of the same size as the one we have, calculate the

median of each and then see how variable our answers were in each of

these separate simulated samples.

However, we don’t know what the true distribution is. So, either we have to

estimate it (e.g. fit a normal distribution) or we have to find some other

estimate. It might be possible to use a kernel density estimate but then

simulating from this might be complicated. The is a much simpler estimate of

the distribution and that is the sample itself.

Specifically, if we have a sample x1,…,xn from a distribution F(.) and we

calculate the sample distribution function, Fn(.) based on our sample, we can

then use Fn(.) directly to generate more samples from our ‘best estimate’ of

the unknown F(.). In fact this is just the same as taking a random sample of

size n, with replacement, from our actual data set x1,…,xn. This may look

very strange but it is a very powerful technique and with the use of the R

function sample(….., replace=TRUE) it can be done very easily.

NRJF, University of Sheffield 52

Statistical Modelling & Computing

3.2.2 Simple Simulation

First, we give an illustration of the basic idea of estimation by simulation.

Suppose we take a sample of size 20 from a Normal distribution N(5,2.72),

i.e. mean 5 and standard deviation, calculate the sample mean and then

want to calculate a 95% confidence interval for the true mean. The standard

way of doing this is to use classical distributional theory and say the 95%

confidence interval is given by

19x t (0.975)s / n±

where s is the sample standard deviation and t19(0.975) is the two-sided 95%

point of a t-distribution on 19 d.f. (which is 2.093, but can be calculated

directly in R as > qt(0.975,19);[1] 2.093024
> x<- rnorm(20,mean=5,sd=2.7)
> mean(x)
[1] 4.75921
> var(x)
[1] 7.10922
> confupper<-mean(x)+qt(0.975,19)*sqrt(var(x)/length(x))
> conflower<-mean(x)-qt(0.975,19)*sqrt(var(x)/length(x))
> confinterval<- c(conflower,confupper)
> confinterval
[1] 3.511338 6.007082

This gives the 95% confidence interval based on our sample as (3.511,6.007)

NRJF, University of Sheffield 53

Statistical Modelling & Computing

However if we could do a practical experiment to see how variable our

estimate of the means is. If we ‘simulate’ our particular sample by taking lots

of similar samples from N(5,2.72) and calculate the mean of each of them,

then we can see experimentally what the range of values they have. We

could then estimate a confidence interval by taking a range which includes

95% of our simulated values. We would not have used the sample standard

deviation nor the t-distribution, nor any of the mathematical theory involving

the t-distribution.
> simulate <-numeric(100)
> for (i in 1:100) simulate[i]<-mean(rnorm(20,mean=5,sd=2.7))
> z<-sort(simulate)
> z
 [1] 3.683628 3.876367 3.901581 3.977876 4.059417 4.084968 4.103193 4.127214
 [9] 4.145423 4.151252 4.151807 4.158069 4.197285 4.220176 4.250503 4.393266
 [17] 4.467750 4.500474 4.521293 4.566604 4.574698 4.613527 4.631142 4.652405
 [25] 4.684332 4.696737 4.699455 4.707846 4.720326 4.732183 4.737479 4.754224
 [33] 4.761708 4.828722 4.832087 4.848576 4.873959 4.897021 4.903855 4.919861
 [41] 4.926004 4.936150 4.955231 4.962549 4.982843 4.985068 5.014348 5.025469
 [49] 5.060322 5.068560 5.070019 5.078719 5.081987 5.086046 5.097905 5.134257
 [57] 5.148494 5.156743 5.162649 5.177213 5.184232 5.190236 5.216297 5.245337
 [65] 5.249008 5.276213 5.296429 5.308889 5.310640 5.316523 5.352162 5.357711
 [73] 5.372045 5.376082 5.423826 5.440574 5.448857 5.477199 5.484830 5.511197
 [81] 5.517907 5.585537 5.598260 5.657312 5.659240 5.662326 5.692230 5.709956
 [89] 5.714891 5.859206 5.926859 5.989662 6.009138 6.072194 6.139593 6.217246
 [97] 6.337749 6.383891 6.385220 6.449417
> z[3]
[1] 3.901581
> z[98]
[1] 6.383891
>

Then we could say that an approximate 95% confidence interval is given by

(3.90, 6.39), — more precisely this is a 96% interval since 96% of our values

lie inside it and 4% outside.

NRJF, University of Sheffield 54

Statistical Modelling & Computing

Computational notes:

1: note the declaration of the vector simulate[.] of length 100 using

numeric(100).

2: note the construction of a simple loop with for (i in 1:100), This can

be notoriously slow in packages such as R and S-plus and advanced

programmers would try to replace loops etc by matrix calculations (but I

don’t intend doing this here).

3: note that we do not need to store all the values in each simulated sample,

we just need the mean of them.

4: note the use of sort(.)

NRJF, University of Sheffield 55

Statistical Modelling & Computing

Difficulty: In this example we ‘knew’ that our sample came from N(5,2.72)

and we used this to simulate further samples. Of course we could never

really know this and so the best we could do is to simulate from our best

guess at the distribution, i.e. N(x ,s2), i.e. N(4.76, 2.672) since 4.76 and 2.66

were the mean and standard deviation of our original sample:
> simulate <- numeric(100)
> for(i in 1:100)simulate[i]<-mean(rnorm(20,mean=4.76,sd=2.67))
> z<-sort(simulate)
> z
 [1] 3.396327 3.502508 3.841749 3.870058 3.923347 3.969280 4.050996 4.071518
 [9] 4.110478 4.115113 4.163969 4.182597 4.185243 4.195840 4.277520 4.286212
 [17] 4.289088 4.295636 4.365233 4.374939 4.386417 4.404138 4.417440 4.425339
 [25] 4.460611 4.471175 4.471656 4.501675 4.510588 4.517224 4.528234 4.535420
 [33] 4.551477 4.552511 4.557144 4.557668 4.569633 4.573537 4.578601 4.582115
 [41] 4.583091 4.583715 4.598089 4.599501 4.609323 4.613675 4.666297 4.671486
 [49] 4.671580 4.679536 4.681736 4.721742 4.723026 4.734635 4.738312 4.738548
 [57] 4.796185 4.800435 4.800466 4.874767 4.887359 4.891548 4.893593 4.899882
 [65] 4.908909 4.925140 4.935247 4.964652 4.970336 4.970521 4.992720 5.080825
 [73] 5.081477 5.091885 5.106060 5.110453 5.129278 5.154696 5.159185 5.184879
 [81] 5.197338 5.206724 5.229970 5.256769 5.271497 5.304417 5.348681 5.356202
 [89] 5.364906 5.376544 5.411127 5.441553 5.545112 5.605137 5.680706 5.789276
 [97] 5.855591 5.902711 5.946993 6.147668
> z[3]
[1] 3.841749
> z[98]
[1] 5.902711

This gives an estimated confidence interval of (3.84, 5.90) — not very

different from our previous estimates, in fact slightly closer to the ‘true

answer’ of (3.511,6.007) but this is just an accident.

NRJF, University of Sheffield 56

Statistical Modelling & Computing

Difficulty: Although we estimated the mean and variance from our sample,

we still assumed that our data came from a Normal distribution. Of course,

we can test this and in the simple case we had above it might seem

reasonable, but in other cases it we might know that a Normal distribution

was not sensible and we might have no idea of a sensible distribution to use

in simulation.

Consider again the problem of estimating the median of the eruption

durations of Old Faithful. We have already seen that the distribution is

bimodal and so cannot possibly be Normal of any sort but here is how we

would check:
> data(faithful)
> attach(faithful)
> par(mfrow=c(2,2))
> library(MASS)
> truehist(eruptions,nbins=15)
> rug(eruptions)
> lines(density(eruptions,adjust=0.7))
> qqnorm(eruptions)
> qqline(eruptions)

NRJF, University of Sheffield 57

1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

0.
0

0.
2

0.
4

0.
6

eruptions

-3 -2 -1 0 1 2 3

1.
5

2.
5

3.
5

4.
5

N ormal Q-Q Plot

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

Statistical Modelling & Computing

3.2.3 Bootstrap Simulation

We cannot possible pretend that the distribution of the eruption durations is

normal so if we want to simulate samples that are like the actual sample we

need another distribution. Now the simplest estimate we have of the ‘true’

distribution of eruption durations is given by the sample itself, i.e. by the

sample distribution function Fn(x)

 0

Fn(x) 1.0

0.5

Xi XnX1 x

If we sample from Fn(x) this is equivalent to taking a sample with
replacement from our original observations.

NRJF, University of Sheffield 58

Statistical Modelling & Computing

> data(faithful)
> attach(faithful)
> set.seed(137)
> help(numeric)
> boots<- numeric(1000)
> for (i in 1:1000) boots[i]<-
 median(sample(eruptions,replace=TRUE))

> mean(boots-median(eruptions))
[1] -0.013551
> sqrt(var(boots))
[1] 0.07662417
> truehist(boots)
> lines(density(boots))
> rug(boots)
> truehist(jitter(boots))
> lines(density(boots,adjust=0.7))
> rug(jitter(boots))

3.6 3.7 3.8 3.9 4.0 4.1 4.2

0
2

4
6

8
10

12
14

boots

3.6 3.7 3.8 3.9 4.0 4.1 4.2

0
2

4
6

8

jitter(boots)

This shows that the bias of the bootstrap estimate is –0.0.136 (i.e. quite

small) and the estimated standard error is 0.077, quite close to the kernel

density estimate of 0.078, which was based in part on a Normal distribution.

Computational notes

NRJF, University of Sheffield 59

Statistical Modelling & Computing

1: Set.seed(137) chooses the ‘seed’ of the random number generator as

137. This means that I can get precisely the same bootstrap sample

again if I set the seed to be 137. If I were to set the seed to another

number then I would get a different sample and so a different estimate at

the end. For example:
> set.seed(731)
> for (i in 1:1000) boots[i]<-
 median(sample(eruptions,replace=T))
> mean(boots-median(eruptions))
[1] -0.0180855
> sqrt(var(boots))
[1] 0.08026924

— slightly different but not enough to be of practical importance.

2: Note the use of jitter in drawing the histogram, there were clearly

problems of observations being exactly on the class boundary (not

surprising since we know the median is 4) and the use of the jitter makes

the histogram a better density estimate — if we just wanted to display the

actual data then the use of jitter would not be statistically justified (and we

should use stem anyway).

NRJF, University of Sheffield 60

Statistical Modelling & Computing

3.2.4 Other Types of Bootstrap

The bootstrap sampling used above took the sample distribution function

Fn(x) as an estimate of the ‘true’ distribution function F(x). This is a very

‘rough’ estimate and it makes intuitive sense to use a smoother one, i.e. to

use a Smooth Bootstrap. We can do this by adding a small amount to each

sampled value, rather like using jitter(.).

The procedure used in the second set of simulations illustrating the simple

simulation technique (i.e. when we presumed the underlying distribution was

Normal but estimated the mean and variance from our sample) is sometimes

known as a Parametric Bootstrap.

The general ideas of bootstrapping are very powerful and very widely used

for statistical analyses that do not depend very much on assumptions that are

difficult to verify. They are one of the techniques that were initially called

computer intensive but now these are becoming so routine and ordinary

that this term is becoming old-fashioned.

NRJF, University of Sheffield 61

Statistical Modelling & Computing

3.3 Randomization and Permutation Tests

When W.S. Gosset (who was also known as ‘Student’) first derived the

t-distribution he did not actually work it out as a result of assuming that the

original data were Normally distributed but from a different argument.

Consider the problem of comparing the means of two samples A and B. Each

of the observations is labelled either A or B. If the null hypothesis that there is

no difference between the two is samples is true then these labels are

entirely random. This means that the true distribution of a test statistic (such

as the t-statistic) could be assessed by considering random re-labelling of

each observation.

We could do this by experiment (or a type of simulation) by doing the

following:

Step 1: calculate our two-sample test statistic, tobs say.

Step 2: randomly label each observation as either A or B (keeping the

sample sizes the same) and then calculate the same test statistic for

comparing all the A observations with the B observations, getting a value t1

say.

Steps 3, 4,…, 1001: repeat step 2 for a total of a 1000 times getting a

thousand values t1, t2, …, t1000 .

NRJF, University of Sheffield 62

Statistical Modelling & Computing

Final step: compare our observed value tobs with the simulated values. If

there is no difference between the original samples A and B then the labels

are arbitrary and so our tobs will not look unusual amongst the simulated t1, t2,

…, t1000. However, if our value tobs is amongst the most extreme 5% then we

would have evidence (at the 5% level) that there really was a difference

between the samples. Specifically, if we order the values so that

t(1)<t(2)<…<t(1000) then we would reject the hypothesis that the two samples

were the same if either tobs<t(25) or if tobs>t(975).

What Student showed was that if you consider the theoretical distribution of

the randomly re-labelled t-values then this was very well approximated by the

‘student t-distribution’. [The mathematics involved much the same

approximations and limits as are involved in proving the Central Limit

Theorem]. It was only later that it was shown that you could get the same

result by assuming that the observations were Normally distributed.

Anyway, it is now easy to perform these tests empirically and so avoid either

the assumption of Normality or the inaccuracy of the approximations

(whichever approach you use). Many packages (not just R and S-plus) now

offer this facility for many tests, e.g. in SPSS you will find it under Options

and Monte Carlo.

Sometimes, the sample is so small that you can consider all possible

relabellings, in which case you just need to calculate the statistics for each

labelling once and then the resulting test is know as a permutation test.
Otherwise, it is known as a randomization test.

NRJF, University of Sheffield 63

Statistical Modelling & Computing

Example: Paired t-test

Consider the shoes example and consider it is a paired t-test. There are 10

pairs and the paired t-test is just the same as a one-sample test on the

differences that the mean is zero. If we randomly relabel each pair as either

A-B or B-A then the numerical values of the differences in values stays the

same, it is just the sign that is changed (with probability 0.5). In fact there are

only 210=1024 different possibilities so it is practical to consider a permutation

test but here we will do it by simulation.

To do this in R we will first define a function to calculate the t-statistic which is

simt
var(x) /n

=
x . Then to change the signs of the differences randomly we

will use the R function sign() which is either +1 or –1 according to whether

the argument is positive or negative, together with a random Uniform(0,1)

number which is generated by the function runif(), subtracting 0.5 from it.

Note that sign(runif(10)-0.5) will produce a vector of length 10

consisting of +1 or –1 with probability 0.5.

NRJF, University of Sheffield 64

Statistical Modelling & Computing

> data(shoes)
> attach(shoes)
> ttest<- function(x) mean(x)/sqrt(var(x)/length(x))
> d<- A-B
> d
 [1] -0.8 -0.6 -0.3 0.1 -1.1 0.2 -0.3 -0.5 -0.5 -0.3
> ttest(d)
[1] -3.348877
> t.test(A,B,paired=TRUE)

 Paired t-test

data: A and B
t = -3.3489, df = 9, p-value = 0.008539
alternative hypothesis: true difference in means is not
equal to 0
95 percent confidence interval:
 -0.6869539 -0.1330461
sample estimates:
mean of the differences
 -0.41

> tsim<- numeric(1000)
> ttest(d)
[1] -3.348877
> for(i in 1:1000)tsim[i]<-ttest(d*sign(runif(10)-0.5))
> truehist(tsim)
> rug(tsim)
> z<- seq(-4,4,0.1)
> lines(z,dt(z,9))
> tobs<-ttest(d)
> markx<- c(tobs,tobs)
> marky<- c(0,0.4)
> lines(markx,marky)
> tsorted<-sort(tsim)
> tsorted[1:10]
 [1] -4.920934 -4.258442 -3.753745 < tobs <-3.348877 -
3.348877 -3.348877 -3.348877
 [8] -3.348877 -3.011905 -3.011905

NRJF, University of Sheffield 65

Statistical Modelling & Computing

-4 -2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

ts im

The picture above gives a histogram of the simulated values (and note from

the rug plot how few distinct values there are — partly this is because there

are only 7 (not 10) distinct values of abs(d).

The vertical line towards the left of the plot marks our observed value of –

3.35 and we can see that only three of our 1000 simulated values are less

than this. We can thus reject the hypothesis that the means are equal at

level 2×3/1000=.006, (note that the t-approximations gives a level of 0.0085,

quite close as can be seen from the density of t9 superimposed on the

histogram).

NRJF, University of Sheffield 66

Statistical Modelling & Computing

3.4 Summary

This section has given a brief summary of classical univariate tests. The key

ideas introduced are that

♦

♦

♦

♦

♦

many of these tests rely on assumptions which may be difficult to

verify or may in fact be wrong (e.g. for bimodal data)

tests involving sample means and variances are more at risk than

those depending on medians and permutation arguments

we can simulate similar samples to obtain estimates of quantities

such as standard errors or p-values

bootstrapping provides a way of making no assumptions about the

distribution of the data at all (except independence!)

randomization and permutation tests are easy to do and provide

good protection. If they are available in your favourite statistics

package (e.g. SPSS) then USE THEM, especially for small sample

problems such as 2×2 tables and chi-squared tests.

NRJF, University of Sheffield 67

Statistical Modelling & Computing

NRJF, University of Sheffield 68

