
Statistical Modelling & Computing 

3. Classical Univariate Statistics 

3.1. Standard tests 

Standard one– and two– sample Normal theory and non-parametric classical 

univariate tests are readily available in R and S-plus. 

Many of these are generic functions and what is returned depends on the 

context, i.e. whether it is a one-sample or two-sample test depends on 

whether you give the function t.test() the names of one or two samples. 

Example: (Data shoes in MASS library but note how to enter the data direct 

into vectors A and B) 

 
 

> data(shoes) 
> shoes 
$A 
 [1] 13.2 8.2 10.9 14.3 10.7 6.6 9.5 10.8 8.8 13.3 
$B 
 [1] 14.0 8.8 11.2 14.2 11.8 6.4 9.8 11.3 9.3 13.6 

Or enter the data directly: 
> A<- c(13.2, 8.2, 10.9, 14.3, 10.7, 6.6, 9.5, 10.8, 8.8, 13.3) 

> B<- c(14.0, 8.8, 11.2, 14.2, 11.8, 6.4, 9.8, 11.3, 9.3, 13.6) 

 
> t.test(A,B) 
 
         Welch Two Sample t-test  
 
data:  A and B  
t = -0.3689, df = 17.987, p-value = 0.7165  
alternative hypothesis: true difference in means is not equal to 0  
95 percent confidence interval: 
 -2.745046  1.925046  
sample estimates: 
mean of x mean of y  
    10.63     11.04  

NRJF, University of Sheffield 47  



Statistical Modelling & Computing 

> t.test(A-B) 
 
         One Sample t-test  
 
data:  A - B  
t = -3.3489, df = 9, p-value = 0.008539  
alternative hypothesis: true mean is not equal to 0  
95 percent confidence interval: 
 -0.6869539 -0.1330461  
sample estimates: 
mean of x  
    -0.41  
 
> t.test(A,B,paired) 
Error in all(arg == choices) : Object "paired" not found 
> t.test(A,B,paired=TRUE) 
 
         Paired t-test  
 
data:  A and B  
t = -3.3489, df = 9, p-value = 0.008539  
alternative hypothesis: true difference in means is not equal to 0  
95 percent confidence interval: 
 -0.6869539 -0.1330461  
sample estimates: 
mean of the differences  
                  -0.41 

 

The full list of tests available is  

binom.test chisq.test cor.test fisher.test 

friedman.test kruskal.test mantelhaen.test mcnemar.test 

prop.test t.test var.test wilcox.test 

chisq.gof ks.gof   

And details can be found in help(). 
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Note that the results of each of these functions is an object and individual 

elements of these objects can be accessed separately by using a $ sign with 
name-of-ofbject$name-of-element: 

> t.test(A-B)$p.value 
[1] 0.00853878 

> t.test(A-B)$conf.int 
[1] -0.6869539 -0.1330461 
attr(,"conf.level") 
[1] 0.95 

Again, a list of elements of each of these tests is given in the help system. 

 

Some of these tests depend upon assumptions on the underlying distribution 

of the data and others do not. For example the t-test presumes data are 

normally distributed but the non-parametric Wilcoxon does not.   Both of them 

can test whether the measures of location are the same for two samples or 

whether the measure has a specific value (e.g. 0) for one sample, but the t-

test works in terms of the mean as the measure of location and the Wilcoxon 

uses the median as the measure. 

Not only is the median more resistant to outliers but the probability argument 

used to obtain the p-value is based on combinatorial arguments rather than 

one assumptions about probability distributions of the data. 
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Example (shoe data again, paired test): 
> t.test(A-B) 
 
         One Sample t-test  
 
data:  A - B  
t = -3.3489, df = 9, p-value = 0.008539  
alternative hypothesis: true mean is not equal to 0  
95 percent confidence interval: 
 -0.6869539 -0.1330461  
sample estimates: 
mean of x  
    -0.41  
 
> wilcox.test(A-B) 
 
         Wilcoxon signed rank test with continuity 
correction  
 
data:  A - B  
V = 3, p-value = 0.01431  
alternative hypothesis: true mu is not equal to 0  
 
Warning message:  
Cannot compute exact p-value with ties in: wilcox.test(A 
- B) 

 

Note that the Wilcoxon returns a larger p-value than the t-test, this is largely 

because the t-test is assuming more about the data and so you ‘get more out 

of the analysis’  (more in ⇒ more out).  This is fine provided the assumptions 

made for the t-test are sensible. It is of course possible to check some of the 

assumptions (e.g. using a normal probability plot for checking normality) but 

with small samples it is difficult to detect non-normality. 
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> qqnorm(A-B)  

> qqline(A-B) 
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This plot suggests that there are at least doubts about normality for these 

data. 

One solution is to use only ‘non-parametric’ methods, but even these make 

some assumptions. 

An alternative is to use permutation methods or simulation techniques, some 

of which come under a general heading of Monte Carlo Methods. The 
Bootstrap is a particular form of simulation technique. 

 

 

 

3.2 The Bootstrap 

NRJF, University of Sheffield 51  



Statistical Modelling & Computing 

3.2.1. Introduction 

Suppose we have estimated the median by the sample median from a set of 

data and want to know how variable this estimate is.  If we knew what the 

true density was then we could simulate more samples from the same 

density, taking samples of the same size as the one we have, calculate the 

median of each and then see how variable our answers were in each of 

these separate simulated samples. 

However, we don’t know what the true distribution is. So, either we have to 

estimate it (e.g. fit a normal distribution) or we have to find some other 

estimate.  It might be possible to use a kernel density estimate but then 

simulating from this might be complicated. The is a much simpler estimate of 

the distribution and that is  the sample itself. 

Specifically, if we have a sample x1,…,xn from a distribution F(.) and we 

calculate the sample distribution function, Fn(.) based on our sample, we can 

then use Fn(.) directly to generate more samples from our ‘best estimate’ of 

the unknown F(.).   In fact this is just the same as taking a random sample of 

size n, with replacement, from our actual data set x1,…,xn.   This may look 

very strange but it is a very powerful technique and with the use of the R 

function sample(….., replace=TRUE) it can be done very easily. 
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3.2.2 Simple Simulation 

First, we give an illustration of the basic idea of estimation by simulation. 

Suppose we take a sample of size 20 from a Normal distribution N(5,2.72), 

i.e. mean 5 and standard deviation, calculate the sample mean and then 

want to calculate a 95% confidence interval for the true mean.  The standard 

way of doing this is to use classical distributional theory and say the 95% 

confidence interval is given by  

19x t (0.975)s / n±  

where s is the sample standard deviation and t19(0.975) is the two-sided 95% 

point of a t-distribution on 19 d.f. (which is 2.093, but can be calculated 

directly in R as > qt(0.975,19);[1] 2.093024 
> x<- rnorm(20,mean=5,sd=2.7) 
> mean(x) 
[1] 4.75921 
> var(x) 
[1] 7.10922 
> confupper<-mean(x)+qt(0.975,19)*sqrt(var(x)/length(x)) 
> conflower<-mean(x)-qt(0.975,19)*sqrt(var(x)/length(x)) 
> confinterval<- c(conflower,confupper) 
> confinterval 
[1] 3.511338 6.007082 

This gives the 95% confidence interval based on our sample as (3.511,6.007) 
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However if we could do a practical experiment to see how variable our 

estimate of the means is. If we ‘simulate’ our particular sample by taking lots 

of similar samples from N(5,2.72) and calculate the mean of each of them, 

then we can see experimentally what the range of values they have. We 

could then estimate a confidence interval by taking a range which includes 

95% of our simulated values.   We would not have used the sample standard 

deviation nor the t-distribution, nor any of the mathematical theory involving 

the t-distribution.  
> simulate <-numeric(100) 
> for (i in 1:100) simulate[i]<-mean(rnorm(20,mean=5,sd=2.7)) 
> z<-sort(simulate) 
> z 
  [1] 3.683628 3.876367 3.901581 3.977876 4.059417 4.084968 4.103193 4.127214 
  [9] 4.145423 4.151252 4.151807 4.158069 4.197285 4.220176 4.250503 4.393266 
 [17] 4.467750 4.500474 4.521293 4.566604 4.574698 4.613527 4.631142 4.652405 
 [25] 4.684332 4.696737 4.699455 4.707846 4.720326 4.732183 4.737479 4.754224 
 [33] 4.761708 4.828722 4.832087 4.848576 4.873959 4.897021 4.903855 4.919861 
 [41] 4.926004 4.936150 4.955231 4.962549 4.982843 4.985068 5.014348 5.025469 
 [49] 5.060322 5.068560 5.070019 5.078719 5.081987 5.086046 5.097905 5.134257 
 [57] 5.148494 5.156743 5.162649 5.177213 5.184232 5.190236 5.216297 5.245337 
 [65] 5.249008 5.276213 5.296429 5.308889 5.310640 5.316523 5.352162 5.357711 
 [73] 5.372045 5.376082 5.423826 5.440574 5.448857 5.477199 5.484830 5.511197 
 [81] 5.517907 5.585537 5.598260 5.657312 5.659240 5.662326 5.692230 5.709956 
 [89] 5.714891 5.859206 5.926859 5.989662 6.009138 6.072194 6.139593 6.217246 
 [97] 6.337749 6.383891 6.385220 6.449417 
> z[3] 
[1] 3.901581 
> z[98] 
[1] 6.383891 
> 

Then we could say that an approximate 95% confidence interval is given by 

(3.90, 6.39), — more precisely this is a 96% interval since 96% of our values 

lie inside it and 4% outside. 
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Computational notes:  

1: note the declaration of the vector simulate[.] of length 100 using 

numeric(100). 

2: note the construction of a simple loop with for (i in 1:100), This can 

be notoriously slow in packages such as R and S-plus and advanced 

programmers would try to replace loops etc by matrix calculations (but I 

don’t intend doing this here).  

3: note that we do not need to store all the values in each simulated sample, 

we just need the mean of them. 

4: note the use of sort(.) 
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Difficulty:  In this example we ‘knew’ that our sample came from N(5,2.72) 

and we used this to  simulate further samples. Of course we could never 

really know this and so the best we could do is to simulate from our best 

guess at the distribution, i.e. N( x ,s2), i.e. N(4.76, 2.672) since 4.76 and 2.66 

were the mean and standard deviation of our original sample: 
> simulate <- numeric(100) 
> for(i in 1:100)simulate[i]<-mean(rnorm(20,mean=4.76,sd=2.67)) 
> z<-sort(simulate) 
> z 
  [1] 3.396327 3.502508 3.841749 3.870058 3.923347 3.969280 4.050996 4.071518 
  [9] 4.110478 4.115113 4.163969 4.182597 4.185243 4.195840 4.277520 4.286212 
 [17] 4.289088 4.295636 4.365233 4.374939 4.386417 4.404138 4.417440 4.425339 
 [25] 4.460611 4.471175 4.471656 4.501675 4.510588 4.517224 4.528234 4.535420 
 [33] 4.551477 4.552511 4.557144 4.557668 4.569633 4.573537 4.578601 4.582115 
 [41] 4.583091 4.583715 4.598089 4.599501 4.609323 4.613675 4.666297 4.671486 
 [49] 4.671580 4.679536 4.681736 4.721742 4.723026 4.734635 4.738312 4.738548 
 [57] 4.796185 4.800435 4.800466 4.874767 4.887359 4.891548 4.893593 4.899882 
 [65] 4.908909 4.925140 4.935247 4.964652 4.970336 4.970521 4.992720 5.080825 
 [73] 5.081477 5.091885 5.106060 5.110453 5.129278 5.154696 5.159185 5.184879 
 [81] 5.197338 5.206724 5.229970 5.256769 5.271497 5.304417 5.348681 5.356202 
 [89] 5.364906 5.376544 5.411127 5.441553 5.545112 5.605137 5.680706 5.789276 
 [97] 5.855591 5.902711 5.946993 6.147668 
> z[3] 
[1] 3.841749 
> z[98] 
[1] 5.902711 

 

This gives an estimated confidence interval of (3.84, 5.90) — not very 

different from our previous estimates, in fact slightly closer to the ‘true 

answer’ of  (3.511,6.007) but this is just an accident. 
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Difficulty:  Although we estimated the mean and variance from our sample, 

we still assumed that our data came from a Normal distribution. Of course, 

we can test this and in the simple case we had above it might seem 

reasonable, but in other cases it we might know that a Normal distribution 

was not sensible and we might have no idea of a sensible distribution to use 

in simulation. 

Consider again the problem of estimating the median of the eruption 

durations of Old Faithful. We have already seen that the distribution is 

bimodal and so cannot possibly be Normal of any sort but here is how we 

would check: 
> data(faithful) 
> attach(faithful) 
> par(mfrow=c(2,2)) 
> library(MASS) 
> truehist(eruptions,nbins=15) 
> rug(eruptions) 
> lines(density(eruptions,adjust=0.7)) 
> qqnorm(eruptions) 
> qqline(eruptions) 
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3.2.3 Bootstrap Simulation 

We cannot possible pretend that the distribution of the eruption durations is 

normal so if we want to simulate samples that are like the actual sample we 

need another distribution.  Now the simplest estimate we have of the ‘true’ 

distribution of eruption durations is given by the sample itself, i.e. by the 

sample distribution function Fn(x) 
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If we sample from Fn(x) this is equivalent to taking a sample with 
replacement from our original observations. 
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> data(faithful) 
> attach(faithful) 
> set.seed(137) 
> help(numeric) 
> boots<- numeric(1000) 
> for (i in 1:1000) boots[i]<- 
    median(sample(eruptions,replace=TRUE)) 
 
> mean(boots-median(eruptions)) 
[1] -0.013551 
> sqrt(var(boots)) 
[1] 0.07662417 
> truehist(boots) 
> lines(density(boots)) 
> rug(boots) 
> truehist(jitter(boots)) 
> lines(density(boots,adjust=0.7)) 
> rug(jitter(boots)) 
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This shows that the bias of the bootstrap estimate is –0.0.136 (i.e. quite 

small) and the estimated standard error is 0.077, quite close to the kernel 

density estimate of 0.078, which was based in part on a Normal distribution. 

 

Computational notes 
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1: Set.seed(137) chooses the ‘seed’ of the random number generator as 

137.   This means that I can get precisely the same bootstrap sample 

again if I set the seed to be 137. If I were to set the seed to another 

number then I would get a different sample and so a different estimate at 

the end. For example: 
> set.seed(731) 
> for (i in 1:1000) boots[i]<-   
     median(sample(eruptions,replace=T)) 
> mean(boots-median(eruptions)) 
[1] -0.0180855 
> sqrt(var(boots)) 
[1] 0.08026924 

— slightly different but not enough to be of practical importance. 

2:  Note the use of jitter in drawing the histogram, there were clearly 

problems of observations being exactly on the class boundary (not 

surprising since we know the median is 4) and the use of the jitter makes 

the histogram a better density estimate — if we just wanted to display the 

actual data then the use of jitter would not be statistically justified (and we 

should use stem anyway).  
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3.2.4 Other Types of Bootstrap 

The bootstrap sampling used above took the sample distribution function 

Fn(x) as an estimate of the ‘true’ distribution function F(x). This is a very 

‘rough’ estimate and it makes intuitive sense to use a smoother one, i.e. to 

use a Smooth Bootstrap. We can do this by adding a small amount to each 

sampled value, rather like using jitter(.). 

The procedure used in the second set of simulations illustrating the simple 

simulation technique (i.e. when we presumed the underlying distribution was 

Normal but estimated the mean and variance from our sample) is sometimes 

known as a Parametric Bootstrap. 

The general ideas of bootstrapping are very powerful and very widely used 

for statistical analyses that do not depend very much on assumptions that are 

difficult to verify.  They are one of the techniques that were initially called 

computer intensive but now these are becoming so routine and ordinary 

that this term is becoming old-fashioned. 
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3.3 Randomization and Permutation Tests 

When W.S. Gosset (who was also known as ‘Student’) first derived the 

t-distribution he did not actually work it out as a result of assuming that the 

original data were Normally distributed but from a different argument. 

Consider the problem of comparing the means of two samples A and B. Each 

of the observations is labelled either A or B. If the null hypothesis that there is 

no difference between the two is samples is true then these labels are 

entirely random.  This means that the true distribution of a test statistic (such 

as the t-statistic) could be assessed by considering random re-labelling of 

each observation. 

We could do this by experiment (or a type of simulation) by doing the 

following: 

Step 1: calculate our two-sample test statistic, tobs say. 

Step 2: randomly label each observation as either A or B (keeping the 

sample sizes the same) and then calculate the same test statistic for 

comparing all the A observations with the B observations, getting a value t1 

say. 

Steps 3, 4,…, 1001: repeat step 2 for a total of a 1000 times getting a 

thousand values t1, t2, …, t1000 . 
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Final step: compare our observed value tobs with the simulated values. If 

there is no difference between the original samples A and B then the labels 

are arbitrary and so our tobs will not look unusual amongst the simulated t1, t2, 

…, t1000. However, if our value tobs is amongst the most extreme 5% then we 

would have evidence (at the 5% level) that there really was a difference 

between the samples. Specifically, if we order the values so that 

t(1)<t(2)<…<t(1000) then we would reject the hypothesis that the two samples 

were the same if either tobs<t(25) or if tobs>t(975). 

What Student showed was that if you consider the theoretical distribution of 

the randomly re-labelled t-values then this was very well approximated by the 

‘student t-distribution’.   [The mathematics involved much the same 

approximations and limits as are involved in proving the Central Limit 

Theorem]. It was only later that it was shown that you could get the same 

result by assuming that the observations were Normally distributed. 

Anyway, it is now easy to perform these tests empirically and so avoid either 

the assumption of Normality or the inaccuracy of the approximations 

(whichever approach you use).  Many packages (not just R and S-plus) now 

offer this facility for many tests, e.g. in SPSS you will find it under Options 

and Monte Carlo. 

Sometimes, the sample is so small that you can consider all possible 

relabellings, in which case you just need to calculate the statistics for each 

labelling once and then the resulting test is know as a permutation test. 
Otherwise, it is known as a randomization test. 
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Example: Paired t-test 

Consider the shoes example and consider it is a paired t-test.  There are 10 

pairs and the paired t-test is just the same as a one-sample test on the 

differences that the mean is zero. If we randomly relabel each pair as either 

A-B or B-A then the numerical values of the differences in values stays the 

same, it is just the sign that is changed (with probability 0.5). In fact there are 

only 210=1024 different possibilities so it is practical to consider a permutation 

test but here we will do it by simulation. 

To do this in R we will first define a function to calculate the t-statistic which is 

simt
var(x) /n

=
x .   Then to change the signs of the differences randomly we 

will use the R function sign() which is either +1 or –1 according to whether 

the argument is positive or negative, together with a random Uniform(0,1) 

number which is generated by the function runif(), subtracting 0.5 from it. 

Note that sign(runif(10)-0.5) will produce a vector of length 10 

consisting of +1 or –1 with probability 0.5.    
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> data(shoes) 
> attach(shoes) 
> ttest<- function(x) mean(x)/sqrt(var(x)/length(x)) 
> d<- A-B 
> d 
 [1] -0.8 -0.6 -0.3  0.1 -1.1  0.2 -0.3 -0.5 -0.5 -0.3  
> ttest(d) 
[1] -3.348877 
> t.test(A,B,paired=TRUE) 
 
         Paired t-test  
 
data:  A and B  
t = -3.3489, df = 9, p-value = 0.008539  
alternative hypothesis: true difference in means is not 
equal to 0  
95 percent confidence interval: 
 -0.6869539 -0.1330461  
sample estimates: 
mean of the differences  
                  -0.41  
 
> tsim<- numeric(1000) 
> ttest(d) 
[1] -3.348877 
> for(i in 1:1000)tsim[i]<-ttest(d*sign(runif(10)-0.5)) 
> truehist(tsim) 
> rug(tsim) 
> z<- seq(-4,4,0.1) 
> lines(z,dt(z,9)) 
> tobs<-ttest(d) 
> markx<- c(tobs,tobs) 
> marky<- c(0,0.4) 
> lines(markx,marky) 
> tsorted<-sort(tsim) 
> tsorted[1:10] 
 [1] -4.920934 -4.258442 -3.753745 < tobs <-3.348877 -
3.348877 -3.348877 -3.348877 
 [8] -3.348877 -3.011905 -3.011905 
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The picture above gives a histogram of the simulated values (and note from 

the rug plot how few distinct values there are — partly this is because there 

are only 7 (not 10) distinct values of abs(d). 

The vertical line towards the left of the plot marks our observed value of  –

3.35 and we can see that only three of our 1000 simulated values are less 

than this.   We can thus reject the hypothesis that the means are equal at 

level 2×3/1000=.006, (note that the t-approximations gives a level of 0.0085, 

quite close as can be seen from the density of t9 superimposed on the 

histogram). 

 

NRJF, University of Sheffield 66  



Statistical Modelling & Computing 

3.4 Summary 

This section has given a brief summary of classical univariate tests. The key 

ideas introduced are that  

♦ 

♦ 

♦ 

♦ 

♦ 

many of these tests rely on assumptions which may be difficult to 

verify or may in fact be wrong (e.g. for bimodal data) 

tests involving sample means and variances are more at risk than 

those depending on medians and permutation arguments  

we can simulate similar samples to obtain estimates of quantities 

such as standard errors or p-values 

bootstrapping provides a way of making no assumptions about the 

distribution of the data at all (except independence!) 

randomization and permutation tests are easy to do and provide 

good protection. If they are available in your favourite statistics 

package (e.g. SPSS) then USE THEM, especially for small sample 

problems such as 2×2 tables and chi-squared tests. 
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