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Basic Matrix Algebra  

0 Introduction 

0.0 Books 

Abadir, Karim M. & Magnus, Jan R. (2005) Matrix Algebra Cambridge 

University Press. 

Searle, Shayle, (2006) Matrix Algebra Useful in Statistics 

Wiley-InterScience. 

Harville, David A. (2008) Matrix Algebra from a Statistician's 

Perspective Springer-Verlag New York 

Basilevsky, Alexander (2005) Applied Matrix Algebra in the Statistical 

Sciences (Dover) 

There are many books on Matrix Algebra and the one listed above by 

Abadir & Magnus is not essentially different from many others; it just 

happens to be the one used for writing much of the material in this set of 

notes and exercises. In particular many of the exercises are taken from 

this book. Some of the exercises and examples are taken from Searle 

and also Basilevsky, Harville has been consulted for ideas. None of 

these give any guidance on the computational aspects using R.  It is not 

expected that these books will need to be consulted since the notes are 

intended to be an expanded synthesis of those parts of these books 

most relevant to the need of those embarking upon the MSc in Statistics 

in Sheffield. 
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As well as describing the basics of matrix algebra, including numerical 

calculations ‘by hand’, for example of matrix multiplication and inversion, 

the notes give guidance on how to do numerical calculations in R. 

R is an open source system and is available free. It is ‘not unlike’ the 

expensive commercial package S-PLUS, the prime difference is that R is 

command-line driven without the standard menus and dialog boxes for 

statistical operations in S-PLUS. Otherwise, most code written for the 

two systems is interchangeable. There are however a few differences, 

for example in the way external files are referenced (S-Plus uses a 

single / and R uses a double // in full file pathnames). There may also be 

differences in the available optional arguments. These are quickly 

verified by use of the Help system. 

The sites from which R and associated software (extensions and 

libraries) and manuals can be found are listed at 

http://www.ci.tuwien.ac.at/R/mirrors.html 

The nearest one is at 

http://cran.uk.r-project.org (in Bristol, UK) 
 

Free versions of full manuals for R (mostly in PDF format) can be found 

at any of these mirror sites.  There is also a wealth of contributed 

documentation.  
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0.1 Objectives 

The aim of these notes is to provide a guide to elementary matrix 

algebra sufficient for undertaking the courses on Multivariate Data 

Analysis and Linear Models. In fact the notes go a little further than this, 

providing an initial guide to more advanced topics such as generalized 

inverses of singular matrices and manipulation of partitioned matrices. 

This is to provide a first step for those who need to go a little further than 

just the MSc courses on Multivariate Data Analysis and Linear Models, 

for example when embarking on the dissertation. Sections which are 

more advanced but nevertheless are very useful to know for complete 

understanding of the courses are marked with a + in the numbering, e.g. 

1.8+ Partitioned Matrices. Particularly advanced sections going well 

beyond that necessary for the courses are indicated with a  in the 

numbering, e.g. 7.3 Moore–Penrose Inverse. It is to be understood 

that sub-sections of those marked with a + or  are also similarly 

categorised. 

Since the applications envisaged for the majority of users of these notes 

are within Statistics most emphasis is given to real matrices and mostly 

to real symmetric matrices. Those who want to go further into 

properties of complex and asymmetric matrix algebra will find a 

comprehensive introduction in Abadir & Magnus. Unless specifically 

indicated, all matrices are presumed to be real. 

. 9  
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In addition to the algebraic manipulation of matrices the notes give 

numerical examples since it is necessary to be able to do numerical 

calculations, both by hand and by using R. Much of the exposition is by 

presenting examples with solutions. There are additionally some 

examples for self study and solutions are available separately (for the 

desperate) to these but for numerical questions the calculations are 

given only in R and in some cases only the numerical answers are 

given. A brief guide to installing and running R is included. 

. 10  
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0.2 Guide to Notation 

 Generally, matrices are denoted by uppercase letters at the 

beginning and end of the alphabet: A, B, C, D, U, V, W, X, Y, Z 

 Generally [column] vectors are denoted by lowercase letters at the 

beginning and end of the alphabet: a, b, c, d, u, v, w, x, y, z 

 Generally elements  of a vector x are denoted by x1, x2, …,xp 

 Generally elements of a matrix X are denoted by x11, x12, …. 

 Sometimes the columns of a matrix X are denoted by x1, x2, …,xq 

 Usually published texts indicate matrices and vectors by bold  

fonts or underscores but this is not be done here except in cases 

of need of resolving ambiguity, clarity and emphasis:  

A, B, x, y, a, x, B,…… 

 Lower case letters in the middle of the alphabet i, j, k, l, m, n, p, q, 

r, s, t generally indicate integers. Often i, j, k, l are used for dummy 

or indexing integers (e.g. in summation signs) whilst m, n, p, q, r, 

s, t are usually used for fixed integers, e.g. for i = 1, 2, …, n. 

 The upper case letters H, I, J are usually be reserved for special 

matrices. 

 The transpose of a matrix X is indicated by X . Some texts may 

use an alternative XT and this may be used in some circumstances 

here. 

 The inverse of a [non-singular] matrix X is indicated as X–1. 

 The [Moore-Penrose] generalized inverse of a [not necessarily 

non-singular or square] matrix is indicated as A+ and the 

generalized inverse by A– (A+ is a restricted form of A–). 

 There are some exceptions to these conventions. 

 

. 11  
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0.3 An Outline Guide to R 

0.3.1 What is R? 

R is a powerful interactive computer package that is orientated towards 

statistical applications. It will run on the most commonly used platforms 

(or operating systems) Windows, Linux and Mac. The notes here are 

orientated towards use on a Windows platform. It consists of a base 

system that can be downloaded without charge together with many 

contributed packages for specialist analyses. It offers:– 

 an extensive and coherent set tools for statistics and data 

analysis 

 a language for expressing statistical models and tools for using 

linear and non-linear statistical models 

 comprehensive facilities for performing matrix calculations and 

manipulations, enabling concise efficient analyses of many 

applications in multivariate data analysis and linear models 

 graphical facilities for interactive data analysis and display 

 an object-orientated programming language that can easily be 

extended 

 an expanding set of publicly available libraries or packages of 

routines for special analyses  

 libraries or packages available from the official Contributed 

Packages webpages are thoroughly tested by the R Core 

Development Team 

 packages have manuals, help systems and usually include 

illustrative datasets 

. 12  
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0.3.2 Installing R 

Full instructions for installing R are given on the R Project home page at 

http://www.r-project.org/. The first step is to choose a site geographically 

close to you from which to download the package. Next choose the 

appropriate operating system, select the option base and download the 

system.  Accepting the option to run the download file will install the 

package after downloading it. Accepting the default options for locations 

etc is simplest but these can be customized. By default an icon ( [with 

version number]) is placed on the desktop.  Clicking on the icon will 

open an R session (i.e. start the R program).  The R Graphical user 

interface (RGui) opens and you are presented with a screen like this: 

 
R version 2.9.0 (2009-04-17) 
Copyright (C) 2009 The R Foundation for Statistical Computing 
ISBN 3-900051-07-0 
 
R is free software and comes with ABSOLUTELY NO WARRANTY. 
You are welcome to redistribute it under certain conditions. 
Type 'license()' or 'licence()' for distribution details. 
 
  Natural language support but running in an English locale 
 
R is a collaborative project with many contributors. 
Type 'contributors()' for more information and 
'citation()' on how to cite R or R packages in publications. 
 
Type 'demo()' for some demos, 'help()' for on-line help, or 
'help.start()' for an HTML browser interface to help. 
Type 'q()' to quit R. 
 
> 
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0.3.3 R is an interactive program 

The symbol  > is the command line prompt symbol;  typing a command 

or instruction will cause it to be executed or performed immediately.   

Along the top of the window is a limited set of menus. The Packages 

menu allows you to install specific packages (which needs to be done 

only once) and then to load them into the session.  Each time a new 

session is started you need to load the packages which you will need. 

This can be done from the Packages>Load Packages... menu or 

by the command library(packagename). Some of the commands 

needed for matrix manipulations are within the MASS library which is 

automatically installed (together with a few others such as stats, 

Matrix, graphics, ...) when R is first installed, i.e. it does not 

need to be installed from the Packages menu but it does need to be 

loaded if needed during each R session. [MASS is Modern Applied 

Statistics with S, by W N Venables & B D Ripley, (2002) Springer]. Some 

packages are automatically loaded during each R session (e.g. stats 

and graphics but not Matrix and MASS). To discover which 

packages are loaded during a session issue the command search(). 

 

A convenient way of running several commands in sequence is to open 

a script window using the File>New script menu which opens a 

simple text editing window for typing the commands. Highlighting a 

selection and then clicking on an icon in the menu bar will run the 

commands in the selection. Lines in the script window can be edited and 

run again. A script can be saved in a file (with default extension .R) and 

opened in a later session via the menus.  

. 14  
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0.3.4 R is a function language 

All commands in R are regarded as functions, they operate on 

arguments, e.g. plot(x, y) plots the vector x against the vector y — 

that is it produces a scatter plot of x vs. y.   Even Help is regarded as a 

function:— to obtain help on the function matrix use help(matrix). 

To end a session in R use quit(), or q(), i.e. the function quit or q 

with a null argument. In fact the function quit can take optional 

arguments, type help(quit) to find out what the possibilities are. 

0.3.5 R is an object orientated language 

All entities (or 'things') in R are objects. This includes vectors, matrices, 

data arrays, graphs, functions, and the results of an analysis. For 

example, the set of results from performing a two-sample t-test is 

regarded as a complete single object. The object can be displayed by 

typing its name or it can be summarized by the function summary().  

Even the results of help are objects, e.g. of help(matrix). If you 

want to store the object created by this for later examination (though the 

need for this may be rare), giving it say the name matrixhelp then do 

matrixhelp<-help(matrix). Typing matrixhelp will print the 

help information on the screen (or it can be exported).  

. 15  
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0.3.6 Saving objects and workspaces 

Objects such as a matrices and vectors (see below) created during an R 

session can be saved in an R workspace file through the 

File>Save Workspace... menu or via the icon. They can be loaded 

into the R session by the menu or (if the default RData file extension is 

accepted) the file can be located in Windows Explorer and clicking 

initiates an R session with this workspace open. Issuing the command 

objects() (or equivalently ls() or use the menu under Misc) will 

list the objects created (or retrieved from a workspace) during the 

current session.   

When you close down R you are prompted to whether you want to save 

the workspace image.  If you have loaded a workspace during the 

session then this will be overwritten by the current one.   When you next 

run R you will start with an empty worksheet and can load any previously 

saved one.    

 

0.3.6.1 Mistakenly saved workspace 

BEWARE:– If you have created all the objects  in the workspace during 

the current session (i.e. you have not loaded or opened a previously 

saved workspace) when you accept the invitation “Save workspace 

image?” at the end of a session it will be saved somewhere on your 

drive.  When you next start R this workspace will be automatically 

restored. This can have unexpected consequences and can cause 

mysterious problems because you will have objects in the workspace 

that you might not have intended to be there. To cure it you can remove 

all objects by rm(list = ls(all = T)) or use the menu under Misc 

and choose Remove all objects. This should give a response 

character(0) to the command ls(). 

. 16  
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0.3.7 R is a case-sensitive language 

Note that R treats lowercase and uppercase letters as different, for 

example inverting a matrix is performed using the function solve() but 

R does not recognize Solve(), nor SOLVE(), nor……  The objects x 

and X are distinct (and easy to confuse). The function matrix and the 

library Matrix are distinct. 

0.3.8 Obtaining help in R 

Obtaining help on specific functions during an R session can by done by 

using either help(functionname) or ?functionname.  This will give 

you the list of possible arguments and the list of possible values 

produced. There may also be examples of their use, including script files 

which can be cut&pasted into a a script window for you to run. Typing 

example(functionname) may run one or more examples. This of 

course requires you to know the name of the function. 

Typing library(help=libraryname) will give summary description 

of the library together with an index of all functions and datasets 

supplied with the library. Having found the name of a function or a 

dataset then use help(.), ? and example(.) to find out more 

about it. For example library(help=stats)lists all the functions in 

library stats; these are mostly statistical functions such as t.test and 

then help(t.test) shows exactly how to perform a Student’s t-test. 

. 17  
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To find out what various packages can do look at the CRAN website and 

click on packages.  This has a basic search facility with CTRL+F (for the 

Windows Find dialogue box) which will search for an exact match for the 

character string entered in the dialogue box. For example to find 

packages which have functions for imputation of missing values then go 

to the Packages page on the CRAN project page and scroll down to the 

list headed Available Bundles and Packages, press CTRL+F 

and enter impute in the dialogue box.  This will list in turn 

arrayImpute, impute, imputeMDR, and yaImpute.  This 

technique will only find strings which appear on the very brief summary 

descriptions of the packages.  A more thorough search can be 

performed from within an R session with help.search or ?? 

 For example help.search(”characterstring”) or equivalently,  

??characterstring, will search all installed packages for an 

approximate match in the summary description of each function in the 

package to the characterstring. The default is to use fuzzy 

matching which may have unexpected consequences. For example 

using help.search(”impute”) or equivalently ??impute will also 

find all such occurrences of compute. To find out how to avoid this and 

instead use exact matching try help(help.search). 

To find out more about R the R website has links (under 

Documentation) to various manuals and other contributed 

documentation.  Following the link from the CRAN page under Other 

and R-related projects gives to The R Wiki at 

http://wiki.r-project.org/rwiki/doku.php 
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0.4 Inputting data to R 

0.4.1 Reading data from the keyboard 

Small amounts of data can be typed directly from the keyboard. For 

example to create a vector x of length 4 containing the four numbers 

1.37, 1.63, 1.73, 1.36 do x<-c(1.37, 1.63, 1.73, 1.36)and to 

enter numbers into a matrix see the next section §0.5.  The function 

scan() can be used to enter data and will stop when a complete blank 

line is read. For example:– 

> x<-scan() 
1: 1.37 
2: 1.63 1.73 
4: 1.36 
5:  
Read 4 items 
> x 
[1] 1.37 1.63 1.73 1.36 
> 
scan() is a very flexible function with facilities for entering tables of 

numbers etc, to find out more type help(scan). 

 

0.4.2 Reading data from files 

The three main functions for reading tabular data from files are, 

read.table(), read.csv()and read.delim(). The first is used 

primarily for plan text files (i.e. with extension .txt or .dat), the second for 

comma separated values (e.g. as produced by Excel) and the third for 

tab separated values. The default format of the data in 

read.table()is that the first row should contain the column names 

(i.e. variable names) and the first item of each row is the row name, so 

the first row contains one fewer items than the other rows. If the data are 

not in such a standard form then look at the help system to find out how 

to use the additional arguments header, row.names and col.names 

to read the data correctly. 
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If a data file has been saved during an R session (using the save() 

function (see help(save)) then the data can just be retrieved by 

load(“filename”). 

The source(“filename”) function will execute all the R commands in 

the specified file and this can be a convenient method of delivering a 

data file. 

The library foreign can be used for reading data files created by 

Minitab, S, SAS, SPSS, Stata, Systat, dBase, ..., (but not S-PLUS).  

There are commercially available packages for reading S-PLUS and 

other files and with a substantial discount for academic use.  
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0.5 Guide to Matrix Operators in R 

The operations given below assume that the orders of the matrices 

involved allow the operation to be evaluated. More details of these 

operations will be given in the notes later. 

 R is case sensitive so A and a denote distinct objects 

 To control the number of digits printed to 3 

options(digits=3) 

 Creating a vector x 

x<-c(x1,x2,...,xp) 

 To access an individual element in a vector x, the ith, 

x[i] 

 Creating a matrix A:  

A<-matrix(data, nrow=m, ncol=n, byrow=F) 

 To access an individual element in a matrix A, the (i,j)th,  

A[i,j] 

 To access an individual row in a matrix A, the ith ,  

A[i,] 

 To access an individual column in a matrix A, the jth,  

A[,j] 

 To access a subset of rows in a matrix A 

A[i1:i2,] 

 To access a subset of columns in a matrix A 

A[,j1:j2] 

 To access a sub-matrix of A 

A[i1:i2,j1:j2] 
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 Addition A + B:  A+B 

 Subtraction A – B: A–B 

 Multiplication AB: A%*%B 

 Transpose A: t(A) 

 Inversion A–1: solve(A) 

 Moore Penrose generalized inverse A+: ginv(A)(in MASS library)  

[or MPinv(A)(in gnm library)] 

 Note: ginv(.) will work with almost any matrix but it is safer to 

use solve(.) if you expect the matrix to be non-singular since 

solve(.) will give an error message if the matrix is singular or 

non-square but ginv(.) will not. 

 Determinant det(A) or |A|: det(A) 

 Eigenanalysis: eigen(A) 

 Singular value decomposition: svd(A) 

 Extracting a diagonal of a matrix 

diag(A) 

 Trace of a matrix 

sum(diag(A)) 

 Creating a diagonal matrix 

diag(c(x11,x22,…xpp)) 

 Creating a diagonal matrix from another matrix 

diag(diag(A)) 

 Changing a data frame  into a matrix: 

data.matrix(dataframe) 

 Changing some other object into a matrix 

as.matrix(object) 
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 To join vectors into a matrix as columns 

cbind(vec1,vec2,...,vecn) 

 To join vectors into a matrix as rows 

rbind(vec1,vec2,...,vecn) 

 To join matrices A and B together side by side: cbind(A,B) 

 To stack A and B together on top of each other: rbind(A,B) 

 finding the length of a vector 

length(x) 

 finding the dimensions of a matrix 

dim(A) 
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0.5.1 Examples of R commands 

This section is for quick reference, details are explained later in the text. 

0.5.1.1 Expressions 

   x(XX)–1x  : x%*%solve(t(X)%*%X))%*%t(x) 

0.5.1.2 Inputting data  

> A<-matrix(c(1,2,3,4,5,6),nrow=2,ncol=3,byrow=F) 
> B<-matrix(c(1,2,3,4,5,6),nrow=2,ncol=3,byrow=T) 
> A 
     [,1] [,2] [,3] 
[1,]    1    3    5 
[2,]    2    4    6 
> A[1,2] 
[1] 3 
> A[1,] 
[1] 1 3 5 
> A[,2] 
[1] 3 4 

> B 
     [,1] [,2] [,3] 
[1,]    1    2    3 
[2,]    4    5    6 
> B[2,2] 
[1] 5 
> B[2,] 
[1] 4 5 6 
> B[,3] 
[1] 3 6 

 
> C<-matrix(c(1,2,3,4,5,6),2,3) 
> D<-matrix(c(1,2,3,4,5,6),2,3,byrow=T) 
> C 
     [,1] [,2] [,3] 
[1,]    1    3    5 
[2,]    2    4    6 

> D 
     [,1] [,2] [,3] 
[1,]    1    2    3 
[2,]    4    5    6 

 

0.5.1.3 Calculations  

> A+B 
     [,1] [,2] [,3] 
[1,]    2    5    8 
[2,]    6    9   12 

> A-B 
     [,1] [,2] [,3] 
[1,]    0    1    2 
[2,]   -2   -1    0 

 
> 2*A 
     [,1] [,2] [,3] 
[1,]    2    6   10 
[2,]    4    8   12 
 

 
> A*2 
     [,1] [,2] [,3] 
[1,]    2    6   10 
[2,]    4    8   12 
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Beware:  
> A%*%B 
Error in A %*% B : non-conformable arguments 
> t(A) 
     [,1] [,2] 
[1,]    1    4 
[2,]    2    5 
[3,]    3    6 

> t(B) 
     [,1] [,2] 
[1,]    1    4 
[2,]    2    5 
[3,]    3    6 

> t(A)%*%B 
     [,1] [,2] [,3] 
[1,]    9   12   15 
[2,]   19   26   33 
[3,]   29   40   51 

> A%*%t(B) 
     [,1] [,2] 
[1,]   22   49 
[2,]   28   64 

 
BEWARE  A*B gives element by element multiplication which is 

rarely required:– 

 
> A*B 
     [,1] [,2] [,3] 
[1,]    1    6   15 
[2,]    8   20   36 
 

0.5.1.4 Dimensions & Lengths of Matrices of Vectors 

> C<-matrix(c(1,2,3,4,5,6),2,3) 
> dim(C) 
[1] 2 3 
> dim(t(C)) 
[1] 3 2 
> length(C) 
[1] 6 
 

> x<-c(1,2,3,4) 
> length(x) 
[1] 4 
> dim(x) 
NULL 
 

Beware:  
> x 
[1] 1 2 3 4 
> t(x) 
     [,1] [,2] [,3] [,4] 
[1,]    1    2    3    4 
> dim(x) 
NULL 
> dim(t(x)) 
[1] 1 4 
> dim(matrix(t(x))) 
[1] 4 1 
 

> matrix(x) 
     [,1] 
[1,]    1 
[2,]    2 
[3,]    3 
[4,]    4 
> dim(matrix(x)) 
[1] 4 1 
> t(matrix(x)) 
     [,1] [,2] [,3] [,4] 
[1,]    1    2    3    4 
> dim(t(matrix(x))) 
[1] 1 4 
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0.5.1.5 Joining matrices together 

> A 
     [,1] [,2] [,3] 
[1,]    1    3    5 
[2,]    2    4    6 
 
 
> cbind(A,C) 
     [,1] [,2] [,3] [,4] [,5] [,6] 
[1,]    1    3    5    1    3    5 
[2,]    2    4    6    2    4    6 
 
 
> t(rbind(t(A),t(B))) 
     [,1] [,2] [,3] [,4] [,5] [,6] 
[1,]    1    3    5    1    2    3 
[2,]    2    4    6    4    5    6 

> C 
     [,1] [,2] [,3] 
[1,]    1    3    5 
[2,]    2    4    6 
 
> rbind(A,C) 
     [,1] [,2] [,3] 
[1,]    1    3    5 
[2,]    2    4    6 
[3,]    1    3    5 
[4,]    2    4    6 
 
> t(cbind(t(A),t(B))) 
     [,1] [,2] [,3] 
[1,]    1    3    5 
[2,]    2    4    6 
[3,]    1    2    3 
[4,]    4    5    6 
 

Beware:–  

     Joining non-conformable matrices will generate error messages 

 

0.5.1.6 Diagonals and Trace 

> -matrix(c(1,2,3,4,5,6,7,8,9),3,3E<
> E 

,byrow=T) 
> diag(c(1,5,9)) 

     [,1] [,2] [,3] 
[1,]    1    2    3 
[2,]    4    5    6 
[3,]    7    8    9 

     [,1] [,2] [,3] 
[1,]    1    0    0 
[2,]    0    5    0 
[3,]    0    0    9 

> diag(E) 
[1] 1 5 9 
> sum(diag(E)) 
[1] 15 
 

> diag(diag(E)) 
     [,1] [,2] [,3] 
[1,]    1    0    0 
[2,]    0    5    0 
[3,]    0    0    9 

0.5.1.7 Trace of Products 

> F<-matrix(c(1,2,3,4,5,6,7,8,9),3,3,) 
> F 
     [,1] [,2] [,3] 
[1,]    1    4    7 
[2,]    2    5    8 
[3,]    3    6    9 

> E%*%F 
     [,1] [,2] [,3] 
[1,]   14   32   50 
[2,]   32   77  122 
[3,]   50  122  194 

> F%*%E 
     [,1] [,2] [,3] 
[1,]   66   78   90 
[2,]   78   93  108 
[3,]   90  108  126 

> sum(diag(E%*%F)) 
[1] 285 
> sum(diag(F%*%E)) 
[1] 285 
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0.5.1.8 Transpose of Products 

> t(E%*%F) 
     [,1] [,2] [,3] 
[1,]   14   32   50 
[2,]   32   77  122 
[3,]   50  122  194 

> t(F)%*%t(E) 
     [,1] [,2] [,3] 
[1,]   14   32   50 
[2,]   32   77  122 
[3,]   50  122  194 

  
Beware:  
> t(E)%*%t(F) 
     [,1] [,2] [,3] 
[1,]   66   78   90 
[2,]   78   93  108 
[3,]   90  108  126 
 

Note 
EF and FE are symmetric but 
neither E nor F is symmetric. 
Also EF(EF) 

0.5.1.9 Determinants 

> G<-matrix(c(1,-2,2,2,0,1,1,1,-2),3,3,byrow=T) 
> G 
     [,1] [,2] [,3] 
[1,]    1   -2    2 
[2,]    2    0    1 
[3,]    1    1   -2 
> det(G) 
[1] -7 
 

0.5.1.10 Diagonal matrices  

> G<-matrix(c(1,-2,2,2,0,1,1,1,-2),3,3,byrow=T) 
> G 
     [,1] [,2] [,3] 
[1,]    1   -2    2 
[2,]    2    0    1 
[3,]    1    1   -2 
> diag(G) 
[1]  1  0 -2 
 
 

> diag(diag(G)) 
     [,1] [,2] [,3] 
[1,]    1    0    0 
[2,]    0    0    0 
[3,]    0    0   -2 
 

0.5.1.11 Inverses  

> solve(A%*%t(B)) 
           [,1]       [,2] 
[1,]  1.7777778 -1.3611111 
[2,] -0.7777778  0.6111111 

> ginv(A%*%t(B)) 
           [,1]       [,2] 
[1,]  1.7777778 -1.3611111 
[2,] -0.7777778  0.6111111 

 

Beware: 
> ginv(t(A)%*%B) 
           [,1]        [,2]       [,3] 
[1,]  1.7407407  0.46296296 -0.8148148 
[2,]  0.2685185  0.07407407 -0.1203704 
[3,] -1.2037037 -0.31481481  0.5740741 

BUT: 
> solve(t(A)%*%B) 
Error in solve.default(t(A) %*% 
B) : system is computationally 
singular: reciprocal condition 
number = 2.03986e-18 
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0.5.1.12 Eigen Analyses 

> eigen(A%*%t(B)) 
$values 
[1] 85.5793377  0.4206623 

> eigen(t(A)%*%B) 
$values 
[1] 8.55793e+01 4.20662e-01 9.81191e-16 

$vectors 
           [,1]       [,2] 
[1,] -0.6104370 -0.9151818 
[2,] -0.7920648  0.4030412 
 

$vectors 
           [,1]       [,2]       [,3] 
[1,] -0.2421783 -0.8150419  0.4082483 
[2,] -0.5280603 -0.1245978 -0.8164966 
[3,] -0.8139422  0.5658463  0.4082483 

0.5.1.13 Singular Value Decomposition 

 
> X<-matrix(c(1,2,3,4,5,6,7,8,9),3,3,byrow=T) 
> X 
     [,1] [,2] [,3] 
[1,]    1    2    3 
[2,]    4    5    6 
[3,]    7    8    9 
 
> svd(X) 
$d 
[1] 1.684810e+01 1.068370e+00 1.776048e-16 
 
$u 
      [,1]       [,2]     [,3] 
[1,] -0.21483  0.88723  0.40824 
[2,] -0.52058  0.24964 -0.81649 
[3,] -0.82633 -0.38794  0.40824 
 

$v 
       [,1]      [,2]       [,3] 
[1,] -0.47967 -0.776690  0.40824 
[2,] -0.57236 -0.075686 -0.81649 
[3,] -0.66506  0.625318  0.40824 
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1 Vectors and Matrices 

1.1 Vectors 

1.1.1 Definitions 

A vector x of order p (or dimension) is a column of p numbers: 

  

 
 
 
 
  
 



1

2

p

x

x
x

x

Technically x is an element of p-dimensional Euclidean space p but this 

will not be central to the material below. 

The numbers xi are the components (or elements) of x. 

It may be referred to as a column vector for emphasis. The transpose of 

x, x=(x1, x2, …,xp) is a row vector. Vectors are presumed to be column 

vectors unless specified otherwise. 

Addition and subtraction of vectors of the same order is performed 

element by element 

 
   
 
   



1 1

2 2

p p

x y

x y
x y

x y

 

It is not possible to add or subtract vectors which are not conformable, 

i.e. which do not have the same dimension or order.  

Scalar multiplication of a vector is element b y element: 

 
  

   



1

2

p

x

x
x

x



for any scalar (real number) . 
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Results of addition and subtraction of two vectors result in a vector of 

the same order. Results of adding to, subtracting from or multiplying a 

vector by a scalar result in a vector of the same order.  

Two vectors x and y are equal if they are of the same order and each 

pair of corresponding elements are equal, i.e. xi = yi, for i = 1,2,…,p. 

A vector with all elements 0 is denoted by 0, i.e. if xi = 0 for i = 1,2,…,p 

then x=0.  

A vector ei with ith element 1 and all others 0 is the ith unit vector. 

A vector with all elements 1 is denoted by 1p, i.e. if xi = 1 for i = 1,2,…,p 

then x=1p. Clearly .   
p

i pi 1
e 1




1p is referred to as the sum vector   [because xi1p = 
p

ii 1
x

 , see below].       

Note that x + y = y + x (commutativity) and (x + y) + z = x + (y + z) 

(associativity). 

 

Vectors cannot be multiplied together in a usual way but a useful scalar 

function of two vectors is the scalar product (or inner product). 

Mathematicians denote this by x,y  and it is defined by 


 p

i ii 1
x,y x y .  

In Statistics it is more usually denoted by xy (see later under matrix 

multiplication). 

Note that x,y  is a scalar (i.e. an ordinary number). 

Example: If x=(1,2,3) and y=(4,5,6) then xy= x,y =14+25+36=32 

Two vectors are said to orthogonal if xy= x,y  = 0. 

For example if x = (1, 2, 0), y =  (–6, 3, 0), z = (0, 0, 7) then x, y and z 

are mutually orthogonal. 

Note that     2
ix,x x x x = sum of the squared elements of x. 
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1.2 Creating vectors in R 

The easiest way to create a vector is to use the function  

c(x1, x2,…,xp): 

> a<-c(1,2,3) 
> a 
[1] 1 2 3 
> b<-c(4,5,6) 
 
and this ‘works’ in some cases but a and b will be interpreted as either 

a column or a row vector according to context. It is better to remove 

ambiguity and ensure that the vector is of the right “class” and force this 

by making using of the matrix(.,.,.) function with 1 column: 

> c<-matrix(c(3,2,1),3,1,byrow=T) 
> d<-matrix(c(6,5,4),nrow=3,ncol=1,byrow=T) 
> c 
     [,1] 
[1,]    3 
[2,]    2 
[3,]    1 

> d 
     [,1] 
[1,]    6 
[2,]    5 
[3,]    4 

 
Without the matrix function the result is of class “numeric” not “matrix”. 

Note that using the matrix function ensures that R prints the result as a 

column vector.  An equivalent way of coercing a string of numbers to be 

of class “matrix” is to use the function as.matrix(.): 

> b<-c(4,5,6) 
> b 
[1] 4 5 6 
> class(b) 
[1] "numeric" 
> b<-as.matrix(b) 
 

> b 
     [,1] 
[1,]    4 
[2,]    5 
[3,]    6 
> class(b) 
[1] "matrix" 
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Note also the use of nrow and ncol and the default order that matrix 

assumes if they are omitted: 

> u<-matrix(c(3,2,1),1,3,byrow=T) 
> u 
     [,1] [,2] [,3] 
[1,]    3    2    1 
> v<-matrix(c(6,5,4), ncol=1,nrow=3,byrow=T) 
 

> v 
     [,1] 
[1,]    6 
[2,]    5 
[3,]    4 
 

 
When entering column vectors or row vectors the byrow argument has 

no effect, i.e. byrow=T and byrow=F give the same result but this is not 

the case when entering matrices (see §1.11). 

 

1.3 Matrices 

1.3.1 Definitions 

An m  n matrix X is a rectangular array of scalar numbers: 

 
 
 
 
 
 




   


11 12 1n

21 22 2n

m1 m2 mn

x x x

x x x
X

x x x

 

This matrix has m rows and n columns, it is an m  n matrix (“m by n 

matrix”), it is a matrix of order m  n, X has dimensions m and n. 

Technically X is an element of m  n-dimensional Euclidean space mn 

but this will not be central to the material below. 

Sometimes we may write X=(xij) 

For example  is a 2  3 matrix. 
 

 
 

1 2 3
A

4 5 6

A [column] vector is a matrix with one column, it is a n  1 matrix where 

n is the order of the vector. A row vector is a 1  n matrix. 
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The numbers xij are the components (or elements) of X. 

A matrix is a square matrix if m = n, i.e. if it has the same number of 

rows and columns, i.e. an n  n matrix is a square matrix. 

The transpose of the m  n  matrix X is the n  m matrix X: 

 
 
  
 
 
 




   


11 21 m1

12 22 m2

1n 2n mn

x x x

x x x
X

x x x

 

A square matrix X is symmetric if X = X. 

Two matrices X and Y are equal if they are of the same order and each 

pair of corresponding elements are equal, i.e. xij = yij, for i = 1,2,…,m and 

j=1, 2, …,n. 

 

A matrix with all elements 0 is denoted by 0, i.e. if xij = 0 for i = 1,2,…, m 

and j=1, 2, …,n  then X=0.  

 

A square matrix with all elements not on the diagonal equal to 0 is a 

diagonal matrix, i.e. if xij = 0 for all i  j (and xii  0 for at least one i). 

A diagonal matrix with all diagonal elements 1 (and all others not on the 

diagonal 0) is denoted by Ip, i.e. if xii = 1 for i = 1,2,…,n and xij = 0 for i  j 

for i,j = 1, 2, …, n then X=In. It is referred to as the identity matrix. 

 
 
 
 
 
 




   


n

1 0 0

0 1 0
I

0 0 1
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Note that X + Y = Y + X (commutativity) and (X + Y) + Z = X + (Y + Z) 

(associativity), provided X, Y and Z are all of the same order. 

If X is a square matrix then diag(X) is the [column] vector of the diagonal 

elements of X, i.e. the vector (xii).  If u is a vector then diag(u) is the 

diagonal matrix with the elements of u along the diagonal and 0s 

elsewhere. So, diag(diag(X)) is a square matrix formed by setting all 

off-diagonal elements of X to 0.  Some texts will call diag(X) this matrix 

but the forma diag(diag(X)) here conforms with R syntax. 

 

The trace of a square matrix is the sum of all the diagonal elements of 

the matrix, i.e. trace(X) = trace(xij) = 
n

iji 1
x

 . 

Note that trace(In) = n. 

 

1.4 Matrix Addition, subtraction and scalar multiplication 

Addition and subtraction of matrices of the same order is performed 

element by element (just as with vectors): 

X + Y = (xij) + (yij) = (xij + yij) 

It is not possible to add or subtract matrices which do not have the same 

dimensions or order.  

Scalar multiplication of a matrix is element b y element: 

 X = (xij) = (xij). 

Results of addition and subtraction of two matrices result in a vector of 

the same order. Results of adding to, subtracting from or multiplying a 

matrix by a scalar result in a matrix of the same order.  

e.g.    
       

         
       

1 2 5 6 6 8 3 4
2

3 4 7 8 10 12 5 6
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1.5 Matrix Multiplication 

If A and B are matrices then we can multiply A by B (to get AB) only if 

the number of columns of A equals the number of rows of B.  So if 

A is an m  n matrix and B is a n  p matrix then the product AB is can 

be defined (but not the product BA). The result is a m  p matrix, i.e. the 

number of rows of the first matrix and the number of columns of the 

second.  The (i,k)th element of AB is obtained by summing the products 

of the elements of the ith row of A with the elements of the kth column of 

B,  
 n

ij jkj 1
AB a b













VU




.  

If C is mn and D is pq then the product CD can only be defined if n=p, 

in which case C and D are said to be conformable. If C and D are such 

that CD is not defined then they are non-conformable. 

Examples:  if then U is 22 and V  is 22 so UV 

is 2222  22 and VU is 2222  22 

1 2 5 6
U , V

3 4 7 8

  
   
  

So, 

 
1 2 5 6 1 5 2 7 1 6 2 8 5 14 6 16

UV
3 4 7 8 3 5 4 7 3 6 4 8 15 28 18 32

            
                   

19 22

43 50

 
  
 

 

and   
5 6 1 2 5 18 10 24 23 34

VU
7 8 3 4 7 24 14 32 31 46

      
             

 

Notice that UV because  
19 22 23 34

43 50 31 46

  
  

  
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if 

1 2
1 2 3

A , B 3 4
4 5 6

5 6

 
        

 







 then note A is a 23 matrix and B is a 32 

matrix so AB is 233222 and BA is 3223  33 

1 2
1 2 3 1 1 2 3 3 5 1 2 2 4 3 6

AB 3 4
4 5 6 4 1 5 3 6 5 4 2 5 4 6 6

5 6

 
                             

 



  


 

22 28

49 64

 
  
 

 

1 2 1 1 2 4 1 2 2 5 1 3 2 6
1 2 3

BA 3 4 3 1 4 4 3 2 4 5 3 3 4 6
4 5 6

5 6 5 1 6 4 5 2 6 5 5 3 6 6

          
                             

 

9 12 15

19 26 33

29 40 51

 
   
 
 

 

 

Notice that AB  BA and indeed AB is a 22 matrix and BA is a 33 

matrix. 

 

U is 22,  A is 23 and B is 32 so U and A are conformable and UA is 

defined (& is a 2223  23 matrix) but U and B are non-conformable 

and you cannot calculate UB because it would be 2232  anything. 
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We have  
1 2 1 2 3 9 12 15

UA
3 4 4 5 6 19 26 33

   
    
   












Note that the transpose of B, B, is 23 so U and B are conformable and 

we have . 

1 2
1 2 1 2 1 3 5 5 11 17

UB 3 4
3 4 3 4 2 5 6 11 25 39

5 6

 
                     

 

In the product AB we say that B is premultiplied by A and A is 

postmultiplied by B. 

In general for two matrices X and Y we have XY  YX. If we have 

matrices such that both XY and YX are defined and we XY = YX then we 

say X and Y commute. If X is mn and Y is pq and if both XY and YX 

are defined then we must have p=n and q=m so XY is nmmn  nn 

and YX is mnnm  mm.  Thus if X and Y commute then XY=YX and 

in particular XY and YX most have the same orders so we must m=n 

and thus two matrices can only commute if they are square matrices of 

the same order.    

Note that square matrices do not in general commute (e.g. U and V 

above). 

If  then UW = WU and U and W commute (check this for 

yourself as an exercise). The identity matrix In commutes with all nn 

square matrices (check this for yourself) and further all diagonal 

matrices commute with matrices of the same order (note that diagonal 

matrices are necessarily square). 

2 2
W

3 5


 
 

Note that (A+B)2 = (A+B)(A+B) = A(A+B)+B(A+B) = A2+AB+BA+B2 and 

so (A+B)2 = =A2+2AB+B2 only if A and B commute. 
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1.6 Transpose and Trace of Sums and Products. 

If A+B is defined (i.e. A & B have the same orders) then (A+B) = A+B 

and trace(A+B) = trace(A)+trace(B). 

If A is mn and B is np then AB is mnnp = mp so (AB) is pm. 

It is easy to show (AB) = BA :   

       n n

ij jk ij jk kj ji jk ijj 1 j 1
(AB)  ( a b )  ( a b ) ( a b ) b a B

 

        A 

Note that A is nm and B is pn so the product AB is not defined but 

BA is defined. 

If  s any scalar then (A) = A. 

If A is mn and B is nm (so both AB and BA are defined, i.e. A and B 

are mutually conformable) then trace(AB) = trace(BA): 

We have 
n

ij jkj 1
AB ( a b


  )so  

m n

ij jii 1 j 1
trace(AB) ( a b )

 
  

m

ji iki 1
BA ( b a )


   so 

n m

ji ijj 1 i 1
trace(BA) ( b a )

 
   =trace(AB). 

If  is any scalar then trace(A) = trace(A). 
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1.7 Special Matrices  

1.7.1 Symmetric & Skew-symmetric matrices 

A square nn matrix A = (aij) is symmetric of A = A , i.e. aij = aji for all i, j. 

A square matrix B is skew-symmetric if B = –B, i.e. bij = –bji, all i, j. It is 

easy to see that all skew-symmetric matrices have zero elements on the 

diagonals. 

Any square matrix X can be expressed a X = ½(X+X)+½(X–X). Since 

(X+X) = (X+X) and (X–X) = –(X–X) we have that any square matrix 

can be expressed as the sum of a symmetric part and a skew-symmetric 

part. 

Let  then both A and B are symmetric but 

 which is not symmetric. 

1 1 0 1
A , B

1 0 1 1

  
   
   

1 1 0 1 1 2

1 0 1 1 0 1

   
    
   


















AB

Consider Z = ABA.  If B is symmetric then Z is symmetric, because 

(ABA) = AB(A) = ABA if B is symmetric and B =B. However, the 

converse is not true:  

Let , then A =  and  
0 0

A
1 0


 
 

0 1

0 0



 

ABA =  whether 

or not B is symmetric. 

11 12

21 22 11 12 11

b b 0 0 0 00 0 0 1 0 1

b b b b 0 b1 0 0 0 0 0

         
          

         

 

. 39  
 



NRJF, University of Sheffield, 2010/2011. Basics of Matrix Algebra with R: 1 Vectors and Matrices  

 

1.7.2 Products with Transpose AA 

If A is mn then the products AA and AA are both defined, resulting in 

mm and nn matrices respectively. Both are symmetric, because, for 

example, (AA) = (A)A = AA.   

If the columns of A are a.j then  AA = ja.ja.j . 

(For a general product AB we have AB = ja.jbj. where the bj. are the 

rows of B.) 

1.7.3 Orthogonal Matrices 

A pp square matrix A is orthogonal if AA = AA = Ip .  

Note that for square matrices if AA = Ip then necessarily we have 

AA = Ip since if AA = Ip then (A)–1AAA = (A)–1IpA = Ip   (see later for 

section on inverses).   

Also A–1 = A and if A is orthogonal then A is also orthogonal. 

If A and B are both orthogonal and both pp then AB is orthogonal 

because (AB)AB = BAAB = BIpB = BB = Ip. 

[It is possible to have a mn matrix B such that BB = In but BB  Im, e.g. 

the 21 matrix B = (1,0) has BB = 1 and BB  I2].  
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1.7.3.1 Examples: 

31
21

2 3 1
2 2

1 1
A , B

1 1

   
        

2





 are both orthogonal 

 

cos sin cos sin
A , B

sin cos sin cos

       
         

 are both orthogonal for any 

value of  and it can be shewn that any orthogonal 22 matrix is of this 

form. 

1
2

1 1 1

A 0 1 2

1 1 1

 
 
  


  is orthogonal. 

If A is a pp matrix with rows a1., a2., …, ap. and columns a.1, a.2, …, a.p 

then ai.aj. = 1 if i = j and 0 if i  j and a.ia. j = 1 if i = j and 0 if i  j, i.e. the 

rows and columns of A are orthogonal. 

 

1.7.3.2 Normal Matrices  

A pp matrix is normal if AA = AA, i.e. if A commutes with A. 

Clearly all symmetric, all skew-symmetric and all orthogonal matrices 

are normal. 
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1.7.4 Permutation Matrices 

The nn matrix A is a permutation matrix if each row and each column 

has exactly one 1 and the rest of the entries are zero. 

Examples: 1 2 1 2

0 0 1 0 1 0
1 0 0 1

3A , A , B 0 1 0 , B 1 0 0 , I
0 1 1 0

1 0 0 0 0 1

   
                        

   

 

The columns of a permutation matrix are the complete set of unite 

vectors ei taken in some order, i.e. not necessarily e1, e2,…, ep. For 

example B1=(e3, e2, e1), B2=(e2, e1, e3). 

The effect of pre-multiplication of a matrix X by a permutation matrix is to 

permute the rows of X, post-multiplication permutes the columns. 

All permutation matrices are orthogonal. 

 

1.7.5+ Idempotent Matrices 

A pp matrix A is idempotent if A2 = Ip.  Clearly Ip and 0pp are 

idempotent and if p=2 then these are the only 22 idempotent matrices. 

Let 1
n n nnH I 11  n  then 2 1 1 1 1

n n n n n n n n n n n nn n n nH (I 11 ) I 11 11 (I 11 )           

2
1 1 1 1 1 1

n n n n n n n n n n n n n n nn n n n n n
I 11 11 I ( 11 )( 11 ) H 11 1 (11 )1               

and  is 1nn1  11, i.e. a scalar and = n, noting that 1n is the 

sum vector which sums the elements of a vector when post-multiplying it 

(or pre-multiplying it by its transpose). So 

n n(11 )

2 1 1
n n n n nn nH H 11 11 H 

n     and 

Hn is idempotent.  Hn is called the centering matrix.  
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1.8+ Partitioned Matrices 

1.8.1+ Sub-matrices 

A sub-matrix of a mn matrix A is a rectangular m1n1 section of it 

forming a m1n1 matrix A11.  Note that some texts will regard any matrix 

formed by a subset of rows and columns (not necessarily contiguous) as 

a sub-matrix of A. A sub-matrix Aij of A can be expressed as a product 

EAF where E and F are matrices with all entries either 0 or 1. For 

example, if suppose A11 is the top left hand corner of A consisting of m1 

rows and n1 columns. Let E be the m1n matrix with a 1 in cells 

(1,1), (2,2), …, (m1,m1) and 0 elsewhere and let F be the mn1 matrix 

with 1 in cells (1,1), (2,2), …, (n1,n1) and 0 elsewhere. Then EAF = A11. 

1.8.1.1 Example 

A<- matrix(c(1,2,3,4,5,6,7,8,9),3,3,byrow=T) 
> A 
     [,1] [,2] [,3] 
[1,]    1    2    3 
[2,]    4    5    6 
[3,]    7    8    9 
> E<-matrix(c(1,0,0,0,1,0),2,3,byrow=T) 
> E 
     [,1] [,2] [,3] 
[1,]    1    0    0 
[2,]    0    1    0 
> E%*%A 
     [,1] [,2] [,3] 
[1,]    1    2    3 
[2,]    4    5    6 
> F<- matrix(c(1,0,0,1,0,0),3,2,byrow=T) 
> F 
     [,1] [,2] 
[1,]    1    0 
[2,]    0    1 
[3,]    0    0 
> A%*%F 
     [,1] [,2] 
[1,]    1    2 
[2,]    4    5 
[3,]    7    8 
> E%*%A%*%F 
     [,1] [,2] 
[1,]    1    2 
[2,]    4    5 
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1.8.2+ Manipulation of partitioned matrices 

A matrix A could be partitioned in four sub-matrices A11, A12, A21 and A22 

with orders m1n1, m1n2, m2n1 and m2n2, with m1+m2=m and n1+n2=n, 

so we would have  

11 12

21 22

A A
A

A A

 
  
 

 

This can be useful if some of the Aij have a special form, e.g. are 0 or 

diagonal or the identity matrix. Adding and multiplying matrices 

expressed in their partitioned form is performed by rules analogous to 

those when adding and multiplying element by element. 

For example, if B is partitioned into B11, B12, B21 and B22 with orders 

m1n1, m1n2, m2n1 and m2n2, and C is partitioned in C11, C12, C21 and 

C22 with orders n1p1, n1p2, n2p1 and n2p2 (so Aij and Bij are addition 

conformable and Aij and Cij are multiplication conformable) then we have  

11 11 12 12 11 11 12 21 12 12 12 22

21 21 22 22 21 11 22 21 21 21 22 22

A B A B A C A C A C A C
A B , AC

A B A B A C A C A C A C

     
         




 

which symbolically are identical to the form we would have if 

m1=m2=n1=n2=p1=p2=1. 

Further we have 11 12 11 21

21 22 12 22

A A A A
A

A A A A

    
    


    
 (note the interchange of 

the two off-diagonal blocks). 
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1.8.2.1+ Example   

A matrix can be partitioned into its individual columns: 

Let X=(x1, x2, …, xn) where xi are p-vectors, i.e. X is a pn matrix. Then  

i1

i2
i

ip

x

x
x

x

 
 


  
 





,






 and  and is a np matrix ‘partitioned’ into n rows. 

Further we have  

1

2

n

x

x
X

x

 
   
 
  



n

k k i jk 1
XX x x and X X (x x )


   

n

ki kjk 1
x x



i jx x

 (Note that XX is a pp matrix whose 

(i,j)th element is  and XX is a nn matrix whose (i,j)th element 

is , the inner product of xi and xj , i.e.  . 
p

ik jkk 1
x x



A partitioned matrix of the form  where Zii is a mini 

matrix and the zero sub-matrices are of conformable orders is called a 

block diagonal matrix. 

11

22

rr

Z 0 0 0

0 Z 0 0

0 0 0

0 0 0 Z

 
 


 
 


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1.8.3+ Implementation of partitioned matrices in R 

Matrices of conformable dimensions can be joined together horizontally 

and vertically by command cbind(.,.) and rbind(.,.).  A 

sub-matrix of a mn matrix A of size m1n1 [in the top left corner] can be 

specified by A[1:m1,1:n1]. 

 

> A 
     [,1] [,2] [,3] 
[1,]    1    3    5 
[2,]    2    4    6 
 
> U<-cbind(A,B) 
> U 
     [,1] [,2] [,3] [,4] [,5] [,6] 
[1,]    1    3    5    1    2    3 
[2,]    2    4    6    4    5    6 
 
> U[1:2,3:6] 
     [,1] [,2] [,3] [,4] 
[1,]    5    1    2    3 
[2,]    6    4    5    6 
 
> U[,3:6] 
     [,1] [,2] [,3] [,4] 
[1,]    5    1    2    3 
[2,]    6    4    5    6 
 

> B 
     [,1] [,2] [,3] 
[1,]    1    2    3 
[2,]    4    5    6 
> V<- rbind(A,B) 
> V 
     [,1] [,2] [,3] 
[1,]    1    3    5 
[2,]    2    4    6 
[3,]    1    2    3 
[4,]    4    5    6 
> V[1:2,1:3] 
     [,1] [,2] [,3] 
[1,]    1    3    5 
[2,]    2    4    6 
 
> V[2:4,] 
     [,1] [,2] [,3] 
[1,]    2    4    6 
[2,]    1    2    3 
[3,]    4    5    6 
 

 

Note that because U has 2 rows U[1:2,3:6] and U[,3:6] refer to 

the same sub-matrices (as do V[2:4,] and V[2:4,1:3] since V has 

3 columns. 
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1.9 Algebraic Manipulation of Matrices 

1.9.1 General Expansion of Products 

An expression such as (A+B)(X+Y) can be multiplied out term by term 

but remember to preserve the order of the multiplication of the matrices. 

So (A+B)(X+Y)=A(X+Y)+B(X+Y)=AX+AY+BX+BY and this cannot in 

general be simplified further.  

In particular, (A+B)2=(A+B)(A+B)=A(A+B)+B(A+B)=A2+AB+BA+B2 and 

unless A and B commute we can go no further in collating terms. 

 

1.9.2 Useful Tricks 

1.9.2.1 Tracking Dimensions & 11 Matrices 

It can happen that in an expression involving the product of several 

matrices and vectors some element or sub-product is a 11 matrix (i.e. a 

scalar).  This permits two operations of just this part of the product: 

(i) it can commute with other terms 

(ii) it can be replaced by its transpose 

For example suppose S is pp and x and y are both p-vectors (i.e. p1).  

Let A = Sxx then A is ppp11p  pp. Let B = Sx then B is 

ppp1 p1. 

AB = (Sxx)Sx = Sx(xSx) which is (ppp1)(1pppp1). The 

second factor xSx is (1pppp1)  11, i.e. a scalar and so 

commutes with the first factor. So (Sxx)Sx = (xSx)Sx.  

This is of the form of matrixvector = scalarvector (the same vector) 

and is referred to as an eigenequation (see a later section). 

Another example is used in the next section: consider xAx which is 11, 

i.e. a scalar and so is symmetric, so xAx = (xAx) = xAx,  so we have 

xAx = ½(xAx+xAx) = ½x(A+A)x and the matrix ½(A+A) is symmetric. 
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1.9.2.2 Trace of Products 

Recall that trace(AB)= trace(BA) (if both products are defined) (see§1.6). 

This is useful either if one of AB and BA is simple (e.g. a scalar) or some 

other simplification is possible.  For example if x is a p-vector then 

trace(xx) = trace(xx) and xx is pp but xx is 11, i.e. a scalar and so 

possibly easier to evaluate.  

An example in the other direction is evaluating ySy by noting that 

ySy = trace(ySy) = trace(yyS) = trace(Syy).  A trick like this is used in 

working with the maximized likelihood of the multivariate normal 

distribution. 

 

1.10 Linear and Quadratic Forms 

If a and x are p-vectors then the inner product ax = a1x1+a2x2+…+apxp is 

termed a linear form in x;  it is presumed that a is a known vector of 

numbers and x is a variable. If A is a pp matrix then xAx is a quadratic 

form in x. Again it is presumed that A is a known matrix of numbers and 

x is a variable.  Note that xAx is 11, i.e. a scalar and so is symmetric, 

so xAx = (xAx) = xAx,  so we have xAx = ½(xAx+xAx) = ½x(A+A)x 

and the matrix ½(A+A) is symmetric.  So, we need only consider the 

properties of quadratic forms which involve a symmetric matrix.  

If xAx > 0 whatever the value of x then A is said to be positive definite 

and if xAx  0 for all x then A is said to be positive semi-definite,  

similarly  negative definite and negative semi-definite if xAx<0 or 0. 

It is always assumed that if these terms are used then A is symmetric. 

See later for more on quadratic forms. 
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Example: Suppose p=3, then x Ax     

 

2 2 2
11 1 22 2 33 3 12 1 2 13 1 3 31 1 3 23 2 3 32 2 3a x a x a x a x a x x a x x a x x a x x      

2 2 2
11 1 22 2 33 3 1 2 13 31 1 3 23 32 2 3a x a x a x (a a (a a )x x (a a )x x       

21 1 2x a x x

2 21 1)x x

= ½x(A+A)x. 

If 

1 4 7

A 2 5 8

3 5 9

 
 
 
 




2 2 2
1 2 3 1 2 1 3 2 3x 5x 9x 6x x 10x x 13x x    

3







 then xAx =  

2 2 2
1 2 3 1 2 1 3 2x 5x 9x 2 3x x 2 5x x 2 6.5x x          so we have 

1 4 7 1 3 5

x 2 5 8 x x 3 5 6.5 x

3 5 9 5 6.5 9

  
     
  
  

, replacing the asymmetric matrix A 

with a symmetric one. 

1.11 Creating Matrices in R 

Small matrices can be entered directly using the function matrix(.). 

Large matrices may best be entered by reading the data from a file into 

a dataframe (e.g. with read.table(.) or scan(.)) and then 

converting to a matrix. 

A<- matrix(c(x11,…,xm1, x12,…,xm2,…x1n,…,xmn), nrow=m, 

ncol=n, byrow=F) 

creates a mn matrix taking the values column by column. 

B<- matrix(c(x11,…,x1n, x21,…,x2n,…xm1,…,xmn), nrow=m, 

ncol=n, byrow=T) 

creates a mn matrix taking the values row by row. If the byrow is 

omitted then byrow=F is assumed. If the terms nrow= and ncol= are 

omitted (and just the values m and n given) then it is assumed they are 

in the order row and column).  
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So 

A<- matrix(c(x11,…,xm1, x12,…,xm2,…x1n,…,xmn), m, n) 

creates a mn matrix taking the values column by column. See the 

examples in the next section. 

If data are read into a dataframe then this can be converted to a matrix 
by data.matrix(.) or as.matrix(.): 
X<-read.table(filename) 
X<-data.matrix(X) 

Initially X is of class “dataframe” and then this is converted to class 

“matrix”, as.matrix(X)will have the same effect but can also be used 

on objects which are not entirely numeric. 

The reliance of the class of an object is that some commands will accept 

arguments only of certain classes. 

There are many other ways of creating matrices, some other functions 

give a matrix as a result, e.g. eigen(.) produces a matrix of 

eigenvectors, cbind(.,.,.) will join vectors together into a matrix. 

Details of these are not given here and the help system is generally 

most informative. 
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1.12 Examples 

1.12.1 Entering matrices 
> A<-matrix(c(1,2,3,4,5,6),nrow=2,ncol=3,byrow=F) 
> B<-matrix(c(1,2,3,4,5,6),nrow=2,ncol=3,byrow=T) 
> A 
     [,1] [,2] [,3] 
[1,]    1    3    5 
[2,]    2    4    6 

> B 
     [,1] [,2] [,3] 
[1,]    1    2    3 
[2,]    4    5    6 

Note that the columns of A were filled successively (because byrow=F) 

and the rows of B were filled successively (because byrow=T). 

> C<-matrix(c(1,2,3,4,5,6),2,3) 
> C 
     [,1] [,2] [,3] 
[1,]    1    3    5 
[2,]    2    4    6 

Note that the columns of C 
were filled successively 
(because byrow=F was 
assumed by default). 

 
 
> D<-matrix(c(1,2,3,4,5,6),2,3,byrow=T) 
> D 
     [,1] [,2] [,3] 
[1,]    1    2    3 
[2,]    4    5    6 

 

 

The rows of D were filled 
successively (because 
byrow=T was specified. In 
both cases 2 rows and 3 
columns were taken since 
the order rows, columns 
was assumed. 

 

The order can be 

overridden by 

specifying the 

parameters: 

> E<-matrix(c(1,2,3,4,5,6),ncol=2,nrow=3,byrow=T) 
> E 
     [,1] [,2] 
[1,]    1    2 
[2,]    3    4 
[3,]    5    6 

 

If the parameters are omitted entirely then ncol=1 is assumed and a 

column vector is created (which has class “matrix” because of the 

matrix function). 

>  F<-matrix(c(1,2,3,4,5,6)) 
> F 
     [,1] 
[1,]    1 
[2,]    2 
[3,]    3 
[4,]    4 
[5,]    5 
[6,]    6  
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1.12.1.1 Ambiguity of Vectors 

Note that entering vectors without specifying whether they are column or 

row vectors can lead to ambiguities: if we create the vector a by  

> a<-c(1,2,3) 
 

then it may be interpreted as a column vector (i.e. a 31 matrix) or as a 

row vector (i.e. a 13 matrix) according to what operation is being 

attempted: R will do its very best to produce some answer and avoid 

giving an error message. For example if X is a 33 matrix then 

premultiplying X by a will cause a to be assumed to be a row vector but 

postmultiplying X by a will cause R to regard a as a column vector. See 

§1.12.3.5. 

 

1.12.2 Addition, Subtraction and Transpose 
> A+C 
     [,1] [,2] [,3] 
[1,]    2    6   10 
[2,]    4    8   12 

> A-D 
     [,1] [,2] [,3] 
[1,]    0    1    2 
[2,]   -2   -1    0 

Beware:  

> A+E 
Error in A + E : non-conformable arrays 
> E 
     [,1] [,2] 
[1,]    1    2 
[2,]    3    4 
[3,]    5    6 

>t(E) 
     [,1] [,2] [,3] 
[1,]    1    3    5 
[2,]    2    4    6 

 
 

So A and E are conformable 

> A+t(E) 
     [,1] [,2] [,3] 
[1,]    2    6   10 
[2,]    4    8   12 
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1.12.3 Multiplication 

1.12.3.1 Standard multiplication 

> A<-matrix(c(1,2,3,4,5,6),nrow=2,ncol=3,byrow=T) 
> B<-matrix(c(1,2,3,4,5,6),nrow=3,ncol=2,byrow=T) 
> A 
     [,1] [,2] [,3] 
[1,]    1    2    3 
[2,]    4    5    6 

> B 
     [,1] [,2] 
[1,]    1    2 
[2,]    3    4 
[3,]    5    6 

> A%*%B 
     [,1] [,2] 
[1,]   22   28 
[2,]   49   64 
 

> B%*%A 
     [,1] [,2] [,3] 
[1,]    9   12   15 
[2,]   19   26   33 
[3,]   29   40   51 
 

1.12.3.2 Element by element multiplication 

BEWARE If A and B have the same numbers of rows and columns 

then  A*B gives element by element multiplication which is rarely 

required:– 

 
> A*B 
     [,1] [,2] [,3] 
[1,]    1    6   15 
[2,]    8   20   36 

 

 
1.12.3.3 Non-commuting matrices 

> U<-matrix(c(1,2,3,4),2,2,byrow=T) 
> V<-matrix(c(5,6,7,8),2,2,byrow=T) 
> U 
     [,1] [,2] 
[1,]    1    2 
[2,]    3    4 

> V 
     [,1] [,2] 
[1,]    5    6 
[2,]    7    8 

> U%*%V  
     [,1] [,2] 
[1,]   19   22 
[2,]   43   50 

> V%*%U 
     [,1] [,2] 
[1,]   23   34 
[2,]   31   46 
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1.12.3.4 Commuting matrices 

 
> W<-matrix(c(2,2,3,5),2,2,byrow=T) 
> W 
     [,1] [,2] 
[1,]    2    2 
[2,]    3    5 
 

> U%*%W 
     [,1] [,2] 
[1,]    8   12 
[2,]   18   26 
 

>  W%*%U 
     [,1] [,2] 
[1,]    8   12 
[2,]   18   26 
 

Beware:  
> U%*%A 
     [,1] [,2] [,3] 
[1,]    9   12   15 
[2,]   19   26   33 
 

But 
> B 
     [,1] [,2] 
[1,]    1    2 
[2,]    3    4 
[3,]    5    6 

>  
> U%*%B 
Error in U %*% B : non-conformable arguments 
> t(B) 
     [,1] [,2] [,3] 
[1,]    1    3    5 
[2,]    2    4    6 
 

> U%*%t(B) 
     [,1] [,2] [,3] 
[1,]    5   11   17 
[2,]   11   25   39 
 

 

1.12.3.5 Transpose of products 

> t(U%*%V) 
     [,1] [,2] 
[1,]   19   43 
[2,]   22   50 
 

> t(V)%*%t(U) 
     [,1] [,2] 
[1,]   19   43 
[2,]   22   50 
 

> t(U)%*%t(V) 
     [,1] [,2] 
[1,]   23   31 
[2,]   34   46 

 

So (UV)=VU  UV 
 
> t(U%*%W) 
     [,1] [,2] 
[1,]    8   18 
[2,]   12   26 

> t(W)%*%t(U) 
     [,1] [,2] 
[1,]    8   18 
[2,]   12   26 

> t(U)%*%t(W) 
     [,1] [,2] 
[1,]    8   18 
[2,]   12   26 

Note that U and W commute so it follows that U and W also commute. 
 
> t(W)%*%U 
     [,1] [,2] 
[1,]    6   13 
[2,]   14   29 
 

> t(W)%*%U 
     [,1] [,2] 
[1,]   11   16 
[2,]   17   24 

 

But it does not follow that because U and W commute then W also 

commutes with U, as the example above demonstrates. 
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1.12.3.6 Ambiguity of vectors 

Consider the following: 

> X<-matrix(c(1,2,3,4,5,6,7,8,9),3,3,byrow=T) 
> X 
     [,1] [,2] [,3] 
[1,]    1    2    3 
[2,]    4    5    6 
[3,]    7    8    9 
> a<-c(1,2,3) 
> a%*%X 
     [,1] [,2] [,3] 
[1,]   30   36   42 
 
 

> b<-c(4,5,6) 
> X%*%b 
     [,1] 
[1,]   32 
[2,]   77 
[3,]  122 

 
So a is interpreted as a row vector but b as column vector above. 

> a%*%b 
     [,1] 
[1,]   32 

> b%*%a 
     [,1] 
[1,]   32 

and here the inner product of a and b is returned whatever the order  of 
the product . 
 
 
To force a and b to column and row vectors see 
> a<-matrix(a,3,1) 
> a 
     [,1] 
[1,]    1 
[2,]    2 
[3,]    3 
> b%*%a 
     [,1] 
[1,]   32 
 

> b<-matrix(b,1,3) 
> b 
     [,1] [,2] [,3] 
[1,]    4    5    6 
 
> a%*%b 
     [,1] [,2] [,3] 
[1,]    4    5    6 
[2,]    8   10   12 
[3,]   12   15   18 

 

1.12.4 Diagonal Matrices 

1.12.4.1 Creating a Diagonal Matrix from a list 

> F<-diag(c(1,2,3,4,5)) 
> F 
     [,1] [,2] [,3] [,4] [,5] 
[1,]    1    0    0    0    0 
[2,]    0    2    0    0    0 
[3,]    0    0    3    0    0 
[4,]    0    0    0    4    0 
[5,]    0    0    0    0    5 

. 55  
 



NRJF, University of Sheffield, 2010/2011. Basics of Matrix Algebra with R: 1 Vectors and Matrices  

 

1.12.4.2 Extracting the Diagonal  

> E%*%A 
     [,1] [,2] [,3] 
[1,]    9   12   15 
[2,]   19   26   33 
[3,]   29   40   51 

> diag(E%*%A) 
[1]  9 26 51 

1.12.4.3 Converting a Matrix to Diagonal 

> diag(diag(E%*%A)) 
     [,1] [,2] [,3] 
[1,]    9    0    0 
[2,]    0   26    0 
[3,]    0    0   51 
 

1.12.5 Trace 

1.12.5.1 Trace of Square Matrix 

> sum(diag(E%*%A)) 
[1] 86 
> sum(diag(U)) 
[1] 5 
> V 
     [,1] [,2] 
[1,]    5    6 
[2,]    7    8 
> sum(diag(V)) 
[1] 13 

But be careful, sum(V) gives the sum of all elements in the matrix, not 

just the diagonals. 

> sum(V) 
[1] 26 
 

1.12.5.2 Trace of Transpose and Products 

> sum(diag(U)); sum(diag(t(U))) 
[1] 5 
[1] 5 
>  
> U%*%V  
     [,1] [,2] 
[1,]   19   22 
[2,]   43   50 
 

> V%*%U 
     [,1] [,2] 
[1,]   23   34 
[2,]   31   46 
 

But  
> sum(diag(U%*%V)); sum(diag(V%*%U)) 
[1] 69 
[1] 69 
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1.12.5.3 Creating a Function for Trace of a Matrix 

> tr<-function(X) { sum(diag(X)) } 
> tr(U) 
[1] 5 
> tr(t(U)) 
[1] 5 
> tr(U%*%V);tr(V%*%U) 
[1] 69 
[1] 69 
 
 

1.13 Exercises 1 

1. Let  

       
                  
       
       

1 4 3 6

a 2 , b 5 , u 2 ,v 5 , w (7,8,9)

3 6 1 4

a) calculate a + b, v – a, w+ b, 3u, w – a, v/3, ab and ba 

b) repeat the calculations in a) using R 

2. Let 
  

  
     
    

2 1

x 2 and y 2

3 1







a) Which of a, b, u, v, w in Q1 are orthogonal to x? 

b) Which of a, b, u, v, w in Q1 are orthogonal to y? 

c) Check the answers to a) and b) using R 

3. Let 

1 2
1 2 3

A , B 3 4
4 5 6

5 6

 
          

 

3 5

 
  
 

 
  
 

, 

 ,  

2 2
 and  

3 2
Z

3 6
 (& use the vectors from Q1 and Q2) 

1 2 5 6
U , V

3 4 7 8

  
   
   

W

a) Find AB, BA, BA, aA,  aAa, Vdiag(U), diag(BA), UVWZ, 

diag(diag(UV)), diag(diag(U))diag(diag(V)). 

b) Verify U and V do not commute, but U and W commute and 

U and Z commute. Do W and Z commute? (Guess & verify). 
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4. Using the matrices from Q3,  

a) calculate xUx, xVx, xBAx and xABx  

b) write the four results in the form xSx where S is symmetric.  

 

5. Let 

 , 

      

0 1 0 1 1 1 1 1
A , B , C , D

1 0 0 0 1 1 1 1

      
                

1 1 1 1
E and F

1 1 1 1

   
    

  

    
  then show:– 

a) A2 = – I2 (so A is ‘like’ the square root of –1) 

b) B2 = 0 (but B  0) 

c) CD = – DC (but CD  0) 

d) EF = 0 (but E  0 and F 0)  

 

1.13.1 Notes 

Q5 illustrates that some rules of scalar multiplication do not carry over to 

matrix multiplication. However there are some analogies: 

(a) If a real square matrix A is such that AA = 0 then we must have 

A = 0 because the (i, j)th element of AA is so the 

diagonal element is 
n 2

kjk 1
a

  so if AA = 0 then in particular the 

diagonal elements of AA are zero so we have 0 and 

thus akj = 0 for all k and j and so A = 0. 

n

ki kjk 1
a a



n 2
kjk 1

a




(b) AB = 0 if and only if AAB = 0 since if AAB = 0 then BAAB = 0 so 

(AB)(AB) = 0 and the result follows by (a). 

(c) AB = AC if and only if AAB = AAC which follows by replacing B 

by B – C. 
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2 Rank of Matrices 

2.1 Introduction and Definitions 

An mn matrix X has n columns, x1, x2, …, xn, each of which are 

[column] vectors of length m (or more technically they are elements of 

m) and it has m rows, each of which are [row] vectors of length n.  

Two vectors x1 and x2 are linearly independent if a1x1 + a2x2 = 0 (where 

a1 and a2 are real numbers) implies a1 = a2 = 0.  

A set of vectors x1, x2, …, xr is linearly independent if aixi = 0 implies all 

ai = 0 or, in words, they are linearly independent if there are no 

non-trivial linear combinations of them which equal zero. 

 
The [column-]rank of X is the maximum number of linearly independent 

columns of X. The [row-]rank of X is the maximum number of linearly 

independent rows of X. The row-rank of X is clearly the same as the 

column-rank of X (the transpose of X). 

 
A key theorem, which is non-trivial to prove, is that the row rank and the 

column rank of a matrix are equal. Thus we can talk unambiguously 

about the rank of a matrix X (written rk(X)) without specifying whether 

we mean row-rank or column-rank. (The most straightforward proof 

relies on the notions of a dimension of a vector space and is beyond the 

immediate needs of this introductory material for statistical multivariate 

analysis). 

 
Clearly the [column-] rank of X  n and also the [row-] rank of X  m so 

we have rk(X)  min(m,n). 
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2.2 Examples 

(i) Let   then X is a 23 matrix so rk(X)  min(2,3) = 2. 
1 3 5

X
2 4 6

 
 
 






 

So rk(X) = either 1 or 2.  If rk(X) = 1 then the rows of X are linearly 

independent, i.e. there are constants a1 and a2 ( 0) such that  

a1 (1, 3, 5) + a2 (2, 4, 6) = 0.  Thus we need a1 + 2a2 = 0, 3a1 + 4a2 = 0 

and 5a1 + 6a2 = 0. Subtracting 3 times the first equation from the second 

yields –2a2 = 0 so we have a1 = a2 = 0 so the rows of X are linearly 

independent and rk(X)  2, thus rk(X) = 2. 

(ii) Let .  X is 22 so rk(X)  2.  If a1 (4, 6) + a2 (6, 9) = 0 then 

we have 4a1 + 6a2 = 0 (i.e. 2a1 + 3a2 = 0) and 6a1 + 9a2 = 0,  

i.e. (2a1 + 3a2 = 0 again) so we can take a1 = 3 and a2 = –2 and so the 

columns of X are linearly dependent and thus rk(X) < 2 but rk(X)  1 so 

we conclude rk(X) = 1. 

4 6
X

6 9


 
 

(iii) Let  then X is 34 so rk(X)  min(3,4) = 3. 

1 2 3 2

X 4 5 6 1

5 7 9 1

 
 
 
 

Looking at X it is easy to see that the first row plus the second row is 

equal to the third row so the rows are not linearly independent, thus 

rk(X) < 3.  If rk(X) = 1 then each row must be a multiple (possibly 

fractional) of every other row and again it is easy to see that this is not 

so and thus rk(X)  2 and we conclude rk(X) = 2. 

. 60  
 



NRJF, University of Sheffield, 2010/11. Basics of Matrix Algebra with R: 2 Rank of Matrices  

 

(iv) Let  then X is 43 so rk(X)  min(4,3) = 3. 

1 2 3

5 1 5
X

6 4 5

3 1 4

 
 


 
 







It is easy to see that the first two columns of X are linearly independent 

(otherwise one would be a multiple of the other) (so certainly rk(X)  2) 

but not so easy to tell whether all three columns are linearly 

independent.  Suppose X(a1,a2,a3) = 0 then we have a1 + 2a2 + 3a3 = 0, 

5a1 + a2 + 5a3 = 0, 6a1 + 4a2 +5a3 = 0 and 3a1 + a2 + 4a3 = 0.  Subtracting 

multiples of the first from the second and third gives –9a2 –10a3 = 0 and 

–8a2 – 13a3 = 0. Eliminating a2 from these shews a3 = 0 and hence  

a2 = a3 = 0 and so the columns of X are linearly independent and thus 

rk(X) = 3. 

(v) Let  then rk(X)  3 necessarily and it is easy to see 

that the first two columns of X are linearly independent and so rk(X)  2. 

1 5 6

X 2 6 8

7 1 8

 
 
 
 

Suppose X(a1,a2,a3) = 0 then we have a1 + 5a2 + 6a3 = 0,  

2a1 + 6a2 + 8a3 = 0 and 7a1 + a2 + 8a3 = 0.  Using the first equation to 

eliminate a1 from the second and third gives –4a2 –4a3 = 0 and  

–34a2 –34a3 = 0 and so we can take (a1,a2,a3) = (1,1,–1) to satisfy 

X(a1,a2,a3) = 0 non-trivially shewing rk(X) < 3, thus rk(X) = 2. 
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2.2.1 Notes 

An mn matrix X with rk(X) = min(m,n) is said to be of full rank 

(sometimes full row-rank or full column-rank as appropriate). 

It is clear that it is not always easy to determine the rank of a matrix, nor 

even whether it is of full rank, using elementary definitions as above.  In 

practice the easiest methods are to use results which come later in 

these notes. In particular to determine whether a square nn matrix is of 

full rank, one can evaluate its determinant (using det(X) in R) and the 

result that the determinant is non-zero if and only if X is of full rank, see 

§3.2.2(v). To find the exact rank of any symmetric square matrix the 

result that the rank is equal to the number of non-zero eigenvalues (see 

§5.4.7) is useful and this can be easily checked in R with the function 

eigen(X). For general mn matrices the rank can be checked as the 

number of non-zero singular values of X given by svd(X), see §5.5.2, 

or as the number of non-zero eigenvalues either XX or XX. 

 

2.3 More Examples 

(i) If In is the nn identity matrix (i.e. nn, diagonal elements all 1 and all 

off-diagonal elements 0) then rk(In) = n since Ina = a for all vectors a so 

Ina = 0 implies a = 0 and the rows of In are linearly independent and it is 

thus of full rank n. 

(ii) If D is a diagonal matrix then rk(D) = #(non-zero diagonal elements in 

D).   This follows by an argument similar to that in (i). 

(iii) rk(X) = 0 if and only if X = 0. If the rank is zero then there are no 

linearly independent columns and so X = 0.  If X = 0 then any column xi 

of X is 0 and so we have axi = 0 for any a (including at least one a  0) 

so X has no linearly independent columns and thus rk(X) = 0. 

(iv) rk(X) = rk(X) if 0, [obviously]. 
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2.4 Rank Factorization 

2.4.1 Matrices of Rank 1 

Suppose X is mn and rk(X) = 1 then let the columns of X be x1,x2,…, xn 

and suppose (with no loss in generality) that x1  0.  Since X has rank 1 

every column xj (2  j  n) of X must be linearly dependent on x1. So for 

each j, 2  j  n we have a1x1 + ajxj = 0, or xj = –a1/aj , noting that aj  0 

because if aj = 0 we have a1x1 = 0 which implies a1 = 0 because we know 

x1  0 but we cannot have both a1 and aj zero.  Thus each column of X is 

a multiple of the first and we can write X = (a1x1, a2x1, …, anx1) = x1a 

which is of the form xy where x is an m-vector and y an n-vector.  

Conversely if X = xy then X = (y1x, y2x, …, ynx) and so all columns are 

linearly dependent upon on m1 vector and so rk(X) = 1. 

Thus if a matrix is of rank 1 then it can be written as xy for some 

vectors x and y (and conversely). 

2.4.2. mn Matrices of Rank r 

The above is a special case of the result that any mn matrix of rank r 

can be written as UV where U is mr and V is nr and each has rank r.  

Since X is of rank r it has r linearly independent columns, say 

u1, u2, …, ur and each column xi of X is a linear combination of these, so 

 for some constants vij.  Letting U = ( u1, u2, …, ur) and V = 

(vij) and the result follows.  In passing, note that if V = (v1, v2, .., vr) we 

have 

r

i j 1
x v


 

r

ij ju

j ju
j 1

x


v  , a sum of r mn matrices each of rank 1. 
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2.5 Rank Inequalities 

2.5.1 Sum and difference 

rk(X+Y)  rk(X) + rk(Y) because if r = rk(X) and s = rk(Y) then let 

x1, x2, …, xr be r linearly independent columns of X and y1, y2, …, xs be s 

linearly independent columns of Y. Then since every column of X can be 

expressed as a linear combination of the xi and likewise every column of 

Y in terms of the yj every column of X+Y can be expressed in terms of a 

linear combination of the r+s vectors x1, x2, …, xr, y1, y2, …, xs. So 

rk(X+Y)  rk(X) + rk(Y). 

 

rk(X–Y)  |rk(X) – rk(Y)| follows from above by replacing X by X–Y and 

noting rk(X–Y) = rk(Y–X). 

 

Note also that rk(X–Y) = rk(X+(–Y))  rk(X) + rk(–Y) = rk(X) + rk(Y),  

i.e. rk(X–Y)  rk(X) + rk(Y) 

 

2.5.2 Products 

rk(XY)  min(rk(X), rk(Y)) because if y1, y2, …, yr are a set of linearly 

independent columns of Y (where rk(XY) = r and presuming that these 

are the first r columns of Y, without loosing generality) then any column 

yj of Y can be expressed as a linear combination of these r columns. If 

the columns of Z=XY are z1, z2, … and noting zj = Xyj then any column zj 

of Z can be expressed as a linear combination of z1, z2, …, zr and so 

rk(Z)  r = rk(Y).  

Similarly rk(X)  rk(Z) and we have rk(XY)  min(rk(X), rk(Y)). 

 

. 64  
 



NRJF, University of Sheffield, 2010/11. Basics of Matrix Algebra with R: 2 Rank of Matrices  

 

2.5.2.1 Product with orthogonal matrix 

If C is an orthogonal matrix then rk(AC) = rk(A) because 

rk(A) = rk(ACC)  rk(AC)  rk(A) 

2.5.3 Sub-matrices 

If Aij is a sub-matrix of A then rk(Aij)  rk(A) because if we express 

Aij = EAF (see §1.8.1) then rk(Aij) = rk(EAF)  rk(EA)  rk(A). 

 

2.6 Exercises 2 

1.  Let X1 = 
 
  , X2 = 

 
  , X3 = 

 
  ,   

  X4 = , X5 =  
   and X6 = . 

 

1.3 9.1

1.2 8.4

 
 
 
 
 

1 2

3 9

2 1

 

1.2 9.1

1.3 8.4

 

 
 

9

3

 

1 2 3

2 1 9

 
 
 
 
 

6 2 8

5 1 6

1 7 8

1 2

2 1

9 3 0

a) What is the rank of each of X1, …, X6? 

b) Find constants a1, a2 & a3 such that a1C31+a2C32+ a3C33= 0 

where C3j (j = 1, 2, 3) are the three columns of X3. 

c) Find constants a1, a2 & a3 such that a1R41+a2R42+ a3R43= 0 

where R4i (i = 1, 2, 3) are the three rows of X4. 

2.  Let X7 =  and X8 = . 

4 5 6

8 10 12

12 15 18

 
 
 
 
 

4 12 8

6 18 12

5 15 10

 
 
 
 
 

a) Show that X7 and X8 are both of rank 1 

b) Find vectors a and b such that X7 = ab 

c) Find vectors u and v such that X8= uv 

3.  Let X9 = X3X4 and X10 = X4X3 . 

a) Evaluate X9 and X10 in R. 

b) What is the rank of X9? 

c) What is the rank of X10? 
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3 Determinants 

3.1 Introduction and Definitions 

With every nn matrix A = (aij) there is a value |A| (or det(A) ), called the 

determinant of A, calculated from the elements of aij of A.  

3.1.1 General Examples  

(i) 22 matrices: 11 12
11 22 12 21

21 22

a a
a a a a

a a
   

(ii) 33 matrices:   

11 12 13
11 22 33 11 23 32 12 21 33 12 23 31

21 22 23
13 21 32 13 22 31

31 32 33

22 23 21 23 21 22
11 12 13

32 33 31 33 31 32

a a a
a a a a a a a a a a a a

a a a
a a a a a a

a a a

a a a a a a
a a a

a a a a a a

  


 

  

 

In (ii) above the 33 determinant has been ‘expanded’ along the first 

row with each element in the row multiplying the determinant of the 

22 sub-matrix obtained by deleting the row and column containing 

that element. Note further that the signs alternate in the expansion.  

In fact, the 33 determinant could have been ‘expanded’ along the 

first column:  

11 22 33 11 23 32 12 21 33 12 23 31 13 21 32 13 22 31

22 23 12 13 12 13
11 21 31

32 33 31 33 22 23

a a a a a a a a a a a a a a a a a a

a a a a a a
a a a

a a a a a a

    

  
  

Again each element of the column multiplies the determinant of the 

22 sub-matrix obtained by deleting the row and column containing 

that element, with alternating signs. 

In fact, the 33 determinant could be ‘expanded’ using any row or 

column in the same way with signs alternating starting with a + or a – 

according as the row or column number is odd or even, respectively. 
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For example, expanding along the second row gives  

|A| =  –a21|A(21)| + a22|A(22)| – a23|A(23)| where A(ij) is the matrix obtained 

by deleting row i and column j. 

The quantity cij = (–1)i+j|A(ij)| is termed the  cofactor of aij. 

The cofactor matrix of A is the matrix C = (cij). C, the transpose of 

C is the adjoint of A and is denoted by A#. 

(iii) A 44 matrix can be evaluated by expanding it using any row or 

column with each element multiplying a 33 matrix. 

(iv) In general, if A is an nn matrix then the determinant of A is 

 for any choice of i or j. 
n n

ik ik kj kjk 1 k 1
| A | a c a c

 
  

3.1.2 Notes 

(i) If (a11, a21) and (a12, a22) are the coordinates of points in a plane then 

|A| is the volume of the parallelogram formed by the vectors (a11, a21) & 

(a12, a22).  Similarly if A is a 33 

matrix then |A| is the volume of the 

parallelepiped formed by the three 

columns of A. 

 
 

(ii) More generally for an nn matrix, 

|A| represents the volume of the 

parallelotope formed by the columns 

of A.  In this sense |A| reflects the size of the matrix A. 

(a11, a12) 

(a21, a22) 

(0,0) 

(iii) Note that each term in the expansion of the determinant is a 

product of n elements, no two of which are in the same row or column. 

The sign of the term depends on whether the sequence of columns 

[when expanding by rows] is an even or odd permutation of the integers 

1, 2, …, n. 
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3.1.3 Numerical Examples 

(i) If A= In then |A| = 1, expand successively by any row or column. 

(ii) Let 
4 6

X
6 9

, then |X| = 49 – 66 = 0. 
 

 
 

(iii) Let 
3 1

X

  , |X| = 32 – (– 1)2 = 6 + 2 = 8. 

2 2


 
 

(iv) Let  ,  

then |X| = 1(68 – 81) – 2(58 – 61) + 7(58 –66)  

              = 40 – 68 + 28 = 0 

1 5 6

X 2 6 8

7 1 8

 
   
 
 

(v) 
  , then (expanding by the middle row)   

|X| = –2(–2(–2) – 2) + 0 – 1(11 – (–2)1) = – 4 – 3 = –7 

1 2 2

X 2 0 1

1 1 2

 
 
  

3.1.4 Implementation in R 

The determinant of a square matrix in R is provided by the  

function det(.). 

3.1.4.1 Examples 

> options(digits=3) 
> det(matrix(c(1,0,0,1),2,2,byrow=T)) 
[1] 1 
> det(matrix(c(1,0,0,0,1,0,0,0,1),3,3,byrow=T) 
+ ) 
[1] 1 
> det(matrix(c(4,6,6,9),2,2,byrow=T)) 
[1] -2e-15 
> det(matrix(c(3,-1,2,2),2,2,byrow=T)) 
[1] 8 
> det(matrix(c(1,5,6,2,6,8,7,1,8),3,3,byrow=T)) 
[1] -4.64e-14 
> det(matrix(c(1,-2,2,2,0,1,1,1,-2),3,3,byrow=T)) 
[1] -7 
(Note that these are the matrices considered in §3.1.3. above) 
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3.2 Properties of Determinants 

3.2.1 Elementary Row & Column Operations on Determinants 

(i) If we multiply a single row(or column) of A by a scalar  then 

the determinant is multiplied by  (follows from definition). 

(ii) If we interchange two rows (columns) of a matrix A then the 

determinant changes sign but not absolute value (proof not 

given, see examples below). 

(iii) If we add a scalar multiple of one row (column) to another 

(column) the determinant does not change (proof not given, see 

examples below). This is useful in evaluation of matrices. 

 

3.2.2 Other Properties of Determinants 

(i) |A| = |A| (this follows from the fact that a determinant can be 

expanded either by rows or by columns). 

(ii) If A is nn and  is a scalar then |A| = n|A|   

(this follows directly from the definition). 

(iii) If a complete row [or column] of A consists of zeroes (i.e. if 

aij = 0 for all j [or for all i] then |A| = 0 (consider expanding the 

determinant by that row [column]). 

(iv) If A has two identical rows [columns] then |A| = 0 (replace one 

of the rows [columns] by the difference between the two 

identical rows [columns]. 

(v) If A is nn and rk(A) < n then |A| = 0 (if A is not of full rank then 

there is a linear combination of rows [columns] that is zero, so 

replace any row [column] by this linear combination. The 

converse is also true, i.e. if rk(A) = n then |A|  0 (see next 

chapter). 
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(vi) If D = diag(d1, d2, …, dn), i.e. diagonal matrix with elements  

d1, d2, …, dn down the diagonal then |D|= d1d2…dn (expand |D| 

successively by leftmost columns). 

(vii) If T is a triangular matrix with elements t1, t2, …, tn down the 

diagonal (i.e. if T is upper [lower] triangular then all elements 

below [above] the diagonal are zero) then |T|= t1t2…tn (expand 

|T| successively by leftmost [rightmost] columns) 

(viii) |AB| = |A||B| for nn matrices A and B (proof not given, see 

examples below). 
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3.2.3 Illustrations of Properties of Determinants 

(i) If   then 
3 2

    

 so |X| = 32 – 2 (– 1) = 6 + 2 = 8 = |X| 

3 1
X

2 2

 
 
 

X
1 2

    

(ii) If 
3 1

 ,  then   X
2 2


 
 

3 3 1

3 2 2

 


 = 332 –3 2 (– 1) = 18 + 6 = 24 = 38 = 3|X| 

(iii) If 
3 1

 ,  then X
2 2


 
 

1 3

2 2


 = –12 – 32 = – 8 = – |X| 

(iv) If   and 


1 2 2

X 2 0 1

1 1 2

 
   
  

2 0 1

Y 1 2 2

1 1 2

 
 
  

then (expanding by 

the top row)   

|Y| = 2(–2(–2) – 2) – 0 + 1(11 – (–2)1) = 4 + 3 = 7 = – |X| 

(v) If  and 

1 2 2

X 2 0 1

1 1 2

 
   
  

1 2 2 2 2

Y 2 2 1 0 1

1 2 ( 2) 1 2

   
    
     

 (subtracting 

twice the third column from the first column) then 

 so 

3 2 2

Y 0 0 1

5 1 2

  
   
  

3 2
| Y   | 7 | X |

5 1

 
   
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(vi) If  and  then 

, so  

11 12

21 22

a a
X

a a

 
  
 

11 11 12

21 11 22

a b a
XY

a b


11 12

21 22

b b
Y

b b

 
  
 

11 12 12 22

21 12 22 22

a b a b

a b a b

  
   

21

21

b

a b

|XY| = a11a21b11b12+a11a22b11b22+a12a21b21b12+a12a22b21b22 

      –a11a21b11b12– a21a12b11b22–a11a22b12b21–a12a22b21b22 

  = a11a22b11b22– a11a22b12b21– a21a12b11b22+a12a21b21b12 

  = (a11a22–a12a21)( b11b22–b12b21) = |X||Y| 

(vii) If then   

1

1

X

1

   
   
 
 
  
    




    






1 1

1 1 1 0

| X | 1

1 0 0 0

1 1 0 0 1

     
      

   
   
      

 
 

        
 

 

0

  

(subtracting the first row from each of the subsequent rows) 

  (n 1)

1 (n 1)

0 1 0 0

[1 (n 1) ](1 )1

0 0 0 0

0 0 0 1



     
 

     

 




   




   

(replacing the first column by the sum of all the columns and 

then noting the matrix is upper triangular so the determinant is 

the product of the diagonal elements)  
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3.3 Orthogonal Matrices 

A is orthogonal if AA = AA = In, since |A| = |A| and |In| = 1 we have that 

if A is orthogonal then |A| = 1. If |A| = +1 then A is termed a rotation 

matrix and if |A| = –1 then A is a reflection matrix. 

 

3.3.1 Examples 

The matrices 1 2 3

1 0 0 1 cos sin
A , A and A

0 1 1 0 sin cos

     
      


      

1 2 3

1 0 0 1 cos sin
B , B and B

0 1 1 0 sin co

     
            






are all 

orthogonal and   are 

all reflection matrices. 

s

 

 

 

. 73  
 



NRJF, University of Sheffield, 2010/2011. Basics of Matrix Algebra with R: 3 Determinants  

 

3.4+ Determinants of Partitioned Matrices 

3.4.1 Some basic results 

Consider the partitioned matrix 
A B

C D



 


  where the dimensions of the 

sub-matrices match suitably. Consider first some special cases where 

some of A, …, D are either 0 or identity matrices. 

(i) If A and B are square matrices then [clearly] 
A 0

| A || D |
0 D

   

(ii) m mn

n

0 I
( 1)

I 0
   (obtained by column interchanges to convert this 

matrix to the identity matrix, each interchange changes the sign 

of the determinant). 

(iii) If B and C are both square matrices then mn0 B
( 1) | B || C |

C 0
   , 

noting m 
 .  It can be shewn that if B and C 

are not square then the matrix must be singular and so has zero 

determinant. 

n

0 I0 B B 0

I 0C 0 0 C

   
    

    

(iv) m

n

I B
1

0 I
  (since the matrix is [upper] triangular). 

(v) Noting (if C = 0 and B  0)    

(and similar if B = 0 and C  0) gives 

mm

n n

I B A 0I 0 A B

0 I 0 I0 D 0 D

     
     

     

A B A 0
| A || D |

0 D C D
  . 
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(vi) m 1D C |  (where B is mn)  

because   

and |–BD–1C| = (–1)m|BD–1C| 

0 B
( 1) | D || B

C D
 



1 1
m

n

0 BI BD BD C 0

C D0 I C D

      
    

    

(vii) (Proof that |AB| = |A||B| ).   

Let 

    

then PQ = R, |P| = 1 and |Q| = |A||B|.  Now premultiplying Q by P 

only multiplies the last n rows of Q by A and ads them to the first 

n rows, i.e. is essentially a combination of elementary row and 

column operations and so this leave the determinant unchanged, 

i.e. |PQ| = |Q| = |A||B|.   

Further |R| = (–1)n|B||ABB–1(–In)| = (–1)2n|AB| = |AB| .   

Thus |AB| = |R| = |PQ| = |Q| = |A||B|. 

n

n n n

I A A 0 0 AB
P , Q , R

0 I I B I B

    
           
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3.5 A key property of determinants 

The results in this section are of key importance in simplifying evaluation 

of the determinant of a sum of a single matrix with a product of two 

matrices.  The proofs rely on non-obvious manipulation of partitioned 

matrices.  

3.5.1 General result 

1 1A B
| A || D CA B | | D || A BD C |

C D
       

(provided A [D] is non-singular) because 

m
1 1

n

I 0A B A B A B

CA IC D C D 0 D CA B 

  
      

  and 

1 1
m

n

A B A BI BD A BD C 0

C D C D0 I C D

    
   

  
     (see §3.4.1(iv) 

3.5.1.1 Note 

Replacing C by –C gives  1 1| A || D CA B | | D || A BD C |   

 

3.5.2 Important special cases 

(i) Putting A = Im and D = In in §3.5.1 above  

gives |Im – BC| = |In – CB| where B is mn and C is nm 

(ii) Similarly we have |Im + BC| = |In + CB| 

(iii) Putting C = x and B = y gives |In +
 xy| = |1+ yx| = (1 + xiyi) 

(iv) Putting B = x and C = –x where x = (x1, x2, …, xn) is a vector of 

length n gives  |In + xx| = |I1 + xx| = (1 + xi
2) 

(v) Putting x = 1n gives |In +1n1n| = (n + 1) 
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3.6 Exercises 3 

1) Find the determinants of 

  

2 3 4 3
A and B

3 4 3 2

  
       

2) Find the determinant of  

4 5 6

X 8 10 12

12 15 18

 
  
 
 

3) Find the determinant of  

1 2 9

X 2 1 3

9 3 0

 
   
 
 

4) Find the determinants of  and  

2 3 3

X 3 2 3

3 3 2

 
   
 
 

3 2 3

Y 2 6 6

3 6 11

 
   
 
 

5) Find the determinant of S 





















1 1

1 1
2

 
 

   
 

6) Find the determinant of  

2 1 3

S 1 2 3

3 3 10

 
   
 
 

. 77  
 



NRJF, University of Sheffield, 2010/2011. Basics of Matrix Algebra with R: 3 Determinants  

 

3.5.1+ Further Exercises 3 

1) [c.f. §3.2.3(vii)] If 2

1

1

X

1

   
    
  
 
  
    




    




 shew that  

X = 2[(1 –)In+1n1n] and hence  

that |X| = 2n(1 – )(n–1)[1 + (n–1)] 

 

2) If 
  shew that |X| = 2 (2+  + 2) by 

shewing that X = I3 + xx for a suitable choice of x. 

2

1 1

X 1 1

   
   
      

3) To shew  
A B

| A B || A B | :
B A

    

a) Shew n n

n

I I A B A B B A

0 I A B B A

    
   

   


  






b) Shew  

  n n

n

A B 0 I I A B B A

0 I B A B A

     
   

   

c) Shew   


 nn n n n

n

I 0I I I I

B IB A 0 A B

   
    

   

d) Shew 
A B

| A B || A B |
B A

    
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4 Inverses 

4.1 Introduction and Definitions 

A square nn matrix A is non-singular if rk(A) = n; if rk(A) < n then A is 

singular.  

If A is an nn matrix and B is also an nn matrix such that AB = BA = In , 

the nn identity matrix, then B is the inverse of A and is denoted by A–1.  

4.2 Examples:  

(i) If 



2 3 4 3
A and B

3 4 3 2

  
       

 then 2

1 0
AB BA I

0 1

 
   

 
,  

so . 1 4 3
A

3 2
  
   

(ii) 
3 4 3 4

A and B
2 3 2 3

  
     


  then 2


1 0
AB BA I

0 1

 
   

 
, 

so . 1 3 4
A

2 3
  
   

(iii) If 

1 0 0 1 0 0

A 0 2 3 and B 0 4 3

0 3 4 0 3 2

  
     
  









  

1 0 0



then  

3AB BA 0 1 0 I

0 0 1

 
    
 
 

1so 

1 0 0

A 0 4 3

0 3 2

 
   
 



 

 

(iv) if 

3 0 4 3 0 4

A 0 1 0 and B 0 1 0

2 0 3 2 0 3

  
     
    

3

1 0 0







   

 then AB BA 0 1 0 I

0 0 1

 
    
 
 

1

3 0 4

A 0 1 0

2 0 3

 
 
 
  

   
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(v) if 
a b d b1

X and Y
ad bcc d c a

   
  (with ad – bc  0)  

then 2

       

1 0
XY YX I

0 1

 
   

 
so 1 d b1

X
ad bc c a

  
    

 

4.2.1 Notes   

(a) Note the similarities between (i) and (iii) an also between (ii) 

and (iv) 

(b) Note that (1) and (ii) follow from the general formula in (v) 

for 22 matrices.   

 

4.3 Properties 

4.3.1 Singular and non-singular matrices 

An nn matrix A only possess an inverse (i.e. is invertible) if rk(A) = n:– 

If B is the inverse of A then In = AB, so n = rk(In) = rk (AB)  

min{rk(A), rk(B)}  rk(A)  n; i.e. n  rk(A)  n so rk(A) = n and A is 

non-singular.  The converse can also be proved [using ideas of vector 

spaces], i.e. if A is non-singular then A must possess an inverse. 

4.3.2 Uniqueness 

Suppose A has an inverse B and also an inverse C, then AB = In and 

also CA = In, so C =C(In) = C(AB) = (CA)B = (In)B = B so the inverse of A, 

A–1, is unique. 

4.3.3 Inverse of inverse 

(A–1)–1 = A because (A)A–1 = A–1(A) = In (because A–1 is the inverse of A, 

but this also means that A(A–1) = (A–1)A = In, shewing A is the inverse  

of A–1.  
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4.3.4 Determinant of Inverse 

1 = |In| = |AA–1| = |A||A–1|, so |A–1| = |A|–1 

So, if A is non-singular (i.e. rk(A) = n if A is nn) then |A|  0 (since A 

must posses an inverse if it is non-singular, §4.3.1). 

4.3.5 Inverse of transpose 

(A)–1 = (A–1) because A(A–1) = (A–1A) = In = In [noting that the product 

of transposes is the transpose of the reverse product, i.e. XY = (YX) ]. 

 

4.3.6 Inverse of product 

If A and B are both nn non-singular matrices then (AB)–1 = B–1A–1 

because (AB)B–1A–1 = AInA
–1

 = AA–1 = In and similarly B–1A–1(AB) = In. 

 

4.3.6.1 Rank of product with non-singular matrix 

(Generalisation of §2.5.2.1).  If C is a non-singular matrix then 

rk(A) = rk(A) since rk(A) = rk(ACC–1)  rk(AC)  rk(A). 

 

4.3.7 Orthogonal Matrices 

(See also §1.7.2 and §3.3).   

An nn matrix A is orthogonal if A–1
 = A, i.e. if AA = AA = In.  

Clearly, if A is orthogonal then so is A. 

 

4.3.8 Scalar Products of Matrices 

If A is an nn matrix and  is any scalar (i.e. real number or constant) 

then (A)–1 = (1/)A–1, because A(1/)A–1 = (1/)AA–1 = 1In = In. 
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4.4 Implementation in R 

The inverse of a non-singular matrix is provided in R by the function 

solve(.).  Two other functions in libraries will also produce inverses of 

non-singular matrices but they are designed to produce generalized 

inverses (see §??? below) of non-singular matrices. These functions are 

ginv(A)(in the MASS library) and MPinv(A)(in the gnm library).  The 

function solve(.) will generate a warning message if the matrix is 

singular. 

 

4.4.1 Examples 

> A<-matrix(c(2,3,3,4),2,2,byrow=T) 
> A; solve(A) 
     [,1] [,2] 
[1,]    2    3 
[2,]    3    4 
     [,1] [,2] 
[1,]   -4    3 
[2,]    3   -2 
> A%*%solve(A) 
     [,1] [,2] 
[1,]    1    0 
[2,]    0    1 
 

> A<-matrix(c(3,4,2,3),2,2,byrow=T) 
> A; solve(A) 
     [,1] [,2] 
[1,]    3    4 
[2,]    2    3 
     [,1] [,2] 
[1,]    3   -4 
[2,]   -2    3 
> A%*%solve(A) 
     [,1] [,2] 
[1,]    1    0 
[2,]    0    1 

 
> A<-matrix(c(1,0,0,0,2,3,0,3,4), 
3,3,byrow=T) 
> A; solve(A) 
     [,1] [,2] [,3] 
[1,]    1    0    0 
[2,]    0    2    3 
[3,]    0    3    4 
     [,1] [,2] [,3] 
[1,]    1    0    0 
[2,]    0   -4    3 
[3,]    0    3   -2 
> A%*%solve(A) 
     [,1] [,2] [,3] 
[1,]    1    0    0 
[2,]    0    1    0 
[3,]    0    0    1 
 

> A<-matrix(c(3,0,4,0,1,0,2,0,3), 
3,3,byrow=T) 
> A; solve(A) 
     [,1] [,2] [,3] 
[1,]    3    0    4 
[2,]    0    1    0 
[3,]    2    0    3 
     [,1] [,2] [,3] 
[1,]    3    0   -4 
[2,]    0    1    0 
[3,]   -2    0    3 
> A%*%solve(A) 
     [,1] [,2] [,3] 
[1,]    1    0    0 
[2,]    0    1    0 
[3,]    0    0    1 
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> A<-matrix(c(1.3,9.1,1.2,8.4), 
2,2,byrow=T) 
> A; solve(A) 
     [,1] [,2] 
[1,]  1.3  9.1 
[2,]  1.2  8.4 
Error in solve.default(A) :  
  system is computationally 
singular: reciprocal condition 
number = 1.59842e-17 
 

> A<-matrix(c(1.2,9.1,1.3,8.4), 
2,2,byrow=T) 
> A; solve(A) 
     [,1] [,2] 
[1,]  1.2  9.1 
[2,]  1.3  8.4 
           [,1]       [,2] 
[1,] -4.8000000  5.2000000 
[2,]  0.7428571 -0.6857143 
> A%*%solve(A) 
            [,1]         [,2] 
[1,] 1.00000e+00 1.009609e-15 
[2,] 8.63025e-17 1.000000e+00 
 

Note that in first example of the two immediately above the matrix is 

singular and the result in the second is the identity matrix I2 to within 

rounding error of order 10–16; see Exercises 2 in the previous chapter.  

To control the number of digits printed use the function options(.) 

with digits specified, e.g. options(digits=3). 

> A<-matrix(c(1,2,9,2,1,3,9,3,0), 
3,3,byrow=T) 
> A; solve(A) 
     [,1] [,2] [,3] 
[1,]    1    2    9 
[2,]    2    1    3 
[3,]    9    3    0 
       [,1]   [,2]   [,3] 
[1,] -0.500  1.500 -0.167 
[2,]  1.500 -4.500  0.833 
[3,] -0.167  0.833 -0.167 
> A%*%solve(A) 
          [,1]     [,2]     [,3] 
[1,]  1.00e+00 3.33e-16 8.33e-17 
[2,] -5.55e-17 1.00e+00 2.78e-17 
[3,]  0.00e+00 0.00e+00 1.00e+00 

> A<-matrix(c(6,2,8,5,1,6,1,7,8), 
3,3,byrow=T) 
> A; solve(A) 
     [,1] [,2] [,3] 
[1,]    6    2    8 
[2,]    5    1    6 
[3,]    1    7    8 
Error in solve.default(A) :  
 system is computationally 

singular: reciprocal condition 
number = 7.17709e-18 
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4.5 Inverses of Patterned Matrices 

If a matrix has a particular pattern then it can be the case that the 

inverse has a similar pattern. So, in some cases it is possible to 

determine the inverse by guessing the form of the inverse up to a small 

number of unknown constants and then determining the constants so 

that the product of the matrix and the inverse is the identity matrix. 

For example, consider the 33 matrix  

2 3 3

X 3 2 3

3 3 2

 
 
 
 

a b b

Y b a b

b b a

 
   
 
 




 
 
 
 
 

; this has identical elements down the diagonal and all 

off-diagonal elements are identical (but distinct from the diagonal). It is a 

sensible guess to look for an inverse with the same structure: 

.  

If XY = I3 then we have  

  so we require that   

2a+6b = 1 and 3a+5b = 0, so a = –5b/3 and so b = 1/(6 – 10/3) = 3/8 and 

a = –5/8.  Check (in R): 

3

2a 6b 3a 5b 3a 5b 1 0 0

3a 5b 2a 6b 3a 5b I 0 1 0

3a 5b 3a 5b 2a 6b 0 0 1

   
      
    

> a<- -5/8 ; b<- 3/8 
> X<- matrix(c(2,3,3,3,2,3,3,3,2),3,3,byrow=T)  
> Y<- matrix(c(a,b,b,b,a,b,b,b,a),3,3,byrow=T) 
> X%*%Y      [,1] [,2] [,3] 
[1,]    1    0    0 
[2,]    0    1    0 
[3,]    0    0    1 
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4.5.1 Matrices of form In + 1n1n 

The example above is a special case of matrices of the form 

In + 1n1n, i.e. 

     
    





 
   




 
  

, (in above  = –1 and  = 3). 

Numerical matrices of this form are easy to recognise. Recall that 1n1n 

is the nn matrix with all elements equal to 1. If the inverse has a similar 

form aIn + b1n1n then we need to find constants a and b such that 

(In + 1n1n)(aIn + b1n1n) = In, so we need   

In = aInIn 
 + bIn1n1n + a1n1nIn  + b1n1n1n1n   

= aIn + (b + a + nb)1n1n      (noting 1n1n = n, see §1.9.2.1). 

Thus we need a + b + a + nb = 1 and b + a + nb = 0, 

so a = –1 and b = –/( + n). 

In the numerical example above we have a = –1 and b = 3/(–1 + 9) = 3/8 

and then the inverse is –I3 + 31313/8, i.e. with diagonal elements  

1 – 3/8 = 5/8 and off-diagonal elements 3/8. 
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4.5.2 Matrices of form A+xy 

A further generalization of above is the result that if the nn matrix A is 

non-singular and x and y are n vectors such that yA–1x  –1 then we 

have 1

1 1 11
1 y A x

(A xy ) A A xy A
  


    1 :  because 

1 1 1 1

1 1

AA xy A xy A xy A1 1 1 1 11
1 y A x 1 y A x 1 y A x

(A xy )(A A xy A ) AA xy A 1

  

 

     
  

       







 

1 1 1 1 1 1
n

1 1

I xy A xy A xy A y A x xy A xy A
n n1 y A x 1 y A x
I I

     

 

      
  

    . 

Numerical matrices of this form are not easy to recognise unless the 

matrix A is the identity matrix or a multiple of it.  It is a little easier if 

additionally x = y.  The main use of this result is that this form arises in 

various theoretical developments of methodology. 

 

 

4.5.2.1 Example 

If A = aIn and x = y =(x1, x2, …, xn)   

then  which is symmetric.  

2
1 1 2 1 n

2
1 2 2 2 n

2
1 n 2 n n

a x x x x x

x x a x x x
A xy

x x x x a x

 
 

  
 
   



   


For example, if a = 2 and x = (1, 2, 3) then 

3 2 3

A xx 2 6 6

3 6 11

 
    
 
 

.  

Note that A–1 = ½ I3, xA–1x = 7 and so the formula gives the inverse as 

0.5 0 0 1 2 3
1

0 0.5 0 2 4 6
(1 7) 2 2

0 0 0.5 3 6 9

   





0.469 0.063 0.094

.0063 0.375 0.188

0.094 0.188 0.219

  
   
   

        
  

 = . 
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Check: 

> X<-matrix(c(3,2,3,2,6,6,3,6,11),3,3,byrow=T) 
> X 
     [,1] [,2] [,3] 
[1,]    3    2    3 
[2,]    2    6    6 
[3,]    3    6   11 
 
> solve(X) 
         [,1]    [,2]     [,3] 
[1,]  0.46875 -0.0625 -0.09375 
[2,] -0.06250  0.3750 -0.18750 
[3,] -0.09375 -0.1875  0.21875 
 

4.6+ Inverses of Partitioned Matrices 

4.6.1 Some basic results 

Consider the partitioned matrix 
A B

C D



 


  where the dimensions of the 

sub-matrices match suitably and non-singularity is assumed where 

necessary. Consider first some special cases where some of A, …, D 

are either 0 or identity matrices. Most of the results below can be 

demonstrated by direct multiplication.   

Recall that 
A B P Q AP BR AQ BS

C D R S CP DR CQ DS

    
        




 

(i) If A and B are square matrices then [clearly] 

1 1

1

A 0 A 0

0 D 0 D

 



  
  

   
   

(ii)  
1 1

1

0 B 0 C

C 0 B 0

 



  
   

   

(iii)  
1

1 1

0 B 0 B

B 0 B 0



 

   
   

   
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(iv) 

  

1

m m

n n

I B I B

0 I 0 I


  

  
   



1

(v) 

  

1

m m

n n

I 0 I 0

C I C I


  

    

(vi) 
1 1 1

1

A B A A BD

0 D 0 D

   



  
   

   
 

(vii) 
1 1

1 1 1

A 0 A 0

C D D CA D

 

  

  
       

 

(viii) 
1

m m

n n

A I 0 I

I 0 I A


  

  
  



 




1

1

(ix) 

  

1

m m

n n

0 I D I

I D I 0


  

  
  

(x)  
1 1

1 1

A B 0 C

C 0 B B AC

 

  

  
       

(xi)  
1 1 1 1

1

0 B C DB C

C D B 0

   



  
   

   

(xii) 
1 1 1 1 1 1

1 1 1

A B A A BE CA A BE

C D E CA E

      

  

   
       

 where E = D – CA–1B 

(xiii)  where F = A – BD–1C 
1 1 1 1

1 1 1 1 1 1

A B F F BD

C D D CF D D CF BD

   

     

  
        

4.6.1.1 Notes 

The matrices E and F in (xii) and (xiii) above are termed the Schlur 

complements of A and D respectively. 

 

. 88  
 



NRJF, University of Sheffield, 2010/2011. Basics of Matrix Algebra with R: 4 Inverses  

 

4.7+ General Formulae 

Let A be an nn matrix (aij) and let C = (cij) be the cofactor matrix of A, 

so C = A#, the adjoint of A, see §3.1.1.  Then, expanding the 

determinant by row k we have  for any k and  
n

kj kjj 1
| A | a c


 

n

jk jkj 1
| A | a c


 

| A | 

  for any column k, (these result follow from the definition 

of the cofactors cij in §3.1.1).  Let B be the matrix obtained by replacing 

the kth row of A by a copy of row i, then |B| = 0 since it has two identical 

rows. Thus, expanding |B| by this row we have  and 

similarly , i.e.  where ik = 1 or 0 

as j = k or j  k.  Similarly   

n

j 1
n

jk ji ikj 1
a c | A


 

kj | A |

kj ija c 0 if i k 

|
n

ik iji 1
a c if k j


 

n

i 1



 ik ija c

Thus AC = CA = |A| In, i.e. AA#
 = A

#A = |A| In, or A–1 = |A|–1A#. 

 

4.7.1 Example 

If  then |A| = (a11a22 – a12a21) and  so 

 so 

11 12

21 22

a a
A

a a


 
 

22 12#

21 11

a a

a a

 
   




22 21

12 11

a a
C

a a

 
   

A 22 12 
 
 

1

21 1111 22 12 21

a a1
A

a aa a a a
 



. 
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4.8 Exercises 4 

1.  Suppose AB = BA and that A is non-singular.   

Shew that A–1B = BA–1 

2. Suppose A is an nn orthogonal matrix and B is nn. Shew that 

AB is orthogonal if, and only if, B is orthogonal. 
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5 Eigenanalysis of real symmetric matrices 

5.1 Introduction and Definitions 

In most of this chapter the matrices considered are real symmetric 

matrices. This restriction is with application to statistical application in 

mind. Details of extensions to non-symmetric and to complex matrices 

are readily available in the references given in 0.0.  

If S is a nn matrix then the eigenvalues of S are the roots of the 

characteristic equation of S, |S –-In| = 0.   Some authors refer to 

eigenvalues as characteristic values or characteristic roots. 

The polynomial pS() = |S – In| is called the characteristic polynomial 

of S.  This is a polynomial of degree n and so has n roots 1, 2, …, n 

which are not necessarily distinct.   Conventionally we order these so 

that 1  2  …  n. 

 

5.1.1 Examples 

(i) 
1 4

  then the characteristic equation of S is |S –
 I2| 

= 

S
9 1


 
 

 21 4
(1 )(1 ) 36 2 35 ( 7) 5

9 1

 
               

 
  

so 1 = 7 and 2 =
 –5 

(ii)  If 
5 3

S
3 2


  then the characteristic equation of S is |S –

 I2| 

= 


 
 

2 26 2
(6 )(2 ) 4 8 8 ( 4) 8

2 2

 
              

 
  

so 1 = 4+22 and 2 =
 4–22.  
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(iii) If 
  then |S – I3| = 3 – 62+ 9 –  4=(–4)(–1)2, 

so 1 =
 4 and 2 =

 3 =
 1, i.e. the three eigenvalues are 4 (with 

multiplicity 1 and 1 with multiplicity 2. 

2 1 1

S 1 2 1

1 1 2

 
 
 
 

 

5.2 Eigenvectors 

If  is an eigenvalue of S (nn say) then |S – In| = 0 so A = S – In is a 

singular matrix and so there is a linear combination of the n columns of 

S equal to zero (i.e. the columns must be linearly dependent), i.e. there 

are constants x1, x2, …, xn, not all zero, such A(x1, x2, …, xn) = 0, i.e. 

such that Ax = 0 or Sx = x.  The vector x is termed the eigenvector 

[corresponding to the eigenvalue ].  Since there are n eigenvalues of S, 

1, 2, …, n (not necessarily distinct) there are n eigenvectors 

x1, x2, …, xn corresponding to the n eigenvalues. Note that xi  0 for all i. 

To find the eigenvectors of a matrix S ‘by hand’ the first step is to find 

the eigenvalues 1, 2, …, n by finding the roots of the n-degree 

polynomial  |S – In| and then for each i in turn solve the simultaneous 

linear equations Sxi = ixi for xi. 
 

5.2.1 General matrices 

Strictly x is termed a right eigenvector  if Sx = x and a left eigenvector if 

xS = x.  Note that necessarily S must be a square matrix for an 

eigenvector to be defined. If S is symmetric (and therefore necessarily 

square) then it is easily seen that left and right eigenvectors are identical 

with identical eigenvalues. Left and right eigenvectors of non-symmetric 

matrices have the same eigenvalues |S – In| =  |(S – In)|. 
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5.3 Implementation in R 

The command for producing the eigenanalysis of a matrix is eigen(). 

This produces the eigenvalues and eigenvectors of a square matrix. If 

the matrix is not symmetric then the command produces the right 

eigenvectors. The eignvalues of the matrix S are stored in the vector 

eigen(S)$values and the eigenvectors in the nn matrix 

eigen(S)$vectors. 

5.3.1 Examples 

To verify the eigenequation:– 

> X<-matrix(c(1,4,9,1),2,2,byrow=T) 
> X 
     [,1] [,2] 
[1,]    1    4 
[2,]    9    1 
 

> eigen(X) 
$values 
[1]  7 -5 
$vectors 
      [,1]   [,2] 
[1,] 0.555 -0.555 
[2,] 0.832  0.832 
 

>  eigen(X)$values[1]* eigen(X)$vectors[,1] 
[1] 3.88 5.82 
>  X%*%eigen(X)$vectors[,1] 
      [,1] 
[1,] 3.88 
[2,] 5.82 
> X<-matrix(c(2,1,1,1,2,1,1,1,2),   
             3,3,byrow=T) 
> X 
     [,1] [,2] [,3] 
[1,]    2    1    1 
[2,]    1    2    1 
[3,]    1    1    2 
 

> eigen(X) 
$values 
[1] 4 1 1 
$vectors 
       [,1]   [,2]   [,3] 
[1,] -0.577  0.816  0.000 
[2,] -0.577 -0.408 -0.707 
[3,] -0.577 -0.408  0.707 
 

To verify the eigenequation:– 

>  eigen(X)$values[1]* eigen(X)$vectors[,1] 
[1] -2.31 -2.31 -2.31 
>  X%*%eigen(X)$vectors[,1] 
      [,1] 
[1,] -2.31 
[2,] -2.31 
[3,] -2.31 
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5.3.2 Notes 

In statistical applications the eigenanalysis of the variance matrix is the 

basis of many statistical analyses.  This matrix is necessarily symmetric 

and also it is positive semi-definite (see §1.10).  Recalling §3.1.2(ii) that 

the ‘size’ of a matrix is reflected by its determinant, combined with the 

properties that the sum and product of the eigenvalues are equal to the 

trace and determinant of the matrix (see §5.4.4(iv)–(vi) below), means 

that the eigenvalues of a matrix are themselves key properties of a 

matrix.  Further the eigenvectors associated with the eigenvalues, 

especially the dominant (i.e. largest) and the minor (smallest) values, 

give further information and provide interpretations of statistical interest, 

e.g. directions of dominant and minor variation in the case of the 

eigenanylsis of a variance matrix. 
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5.4 Properties of eigenanalyses 

5.4.1 Properties related to uniqueness 

(i) If x is an eigenvector of S then any scalar multiple kx is also an 

eigenvector because S(kx) = kx.  Usually eigenvectors are 

normalized so that xx = 1 which means that an eigenvector is 

determined up to its sign.  

(ii) If i and j are distinct eigenvalues of S with eigenvectors xi and 

xj then xi and xj are distinct:  suppose xi = xj = x say, then we 

have Sx = ix and Sx = jx so (I – j)x = 0, so x = 0 because 

I  j which contradicts x being an eigenvector.   

Note that this is true whether or not S is symmetric. 

(iii) If xi and xj are distinct eigenvectors of S with the same 

eigenvalue  then any linear combination of xi and xj is also an 

eigenvector of S since Sxi = xi and Sxj = xj then 

S(a1xi +
 a2xj) = (a1xi +

 a2xj).  For example, the identity matrix In 

has every vector x as an eigenvector. 
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5.4.2 Properties related to symmetric matrices 

(i) Suppose now that S is real and symmetric, i.e. S = S, then the 

eigenvalues of S are real, since suppose j and xj are the 

eigenvalues and vectors and that j = j + ij, xj = yj + izj (where 

here i = (–1)½), then equating real and imaginary parts of 

Sxj = jxj gives Syj = jyj – jzj , and Szj = jyj + jzj . 

Premultiplying the first equation by zj and the second by yj and 

noting zjSyj = (zjSyj) (since it’s a scalar) = yjSzj (since S is 

symmetric by presumption) and subtracting the two equations 

gives vjzjzj + vjyjyj = 0, so vj = 0 because zjzj + yjyj > 0, i.e. j is 

real.   

(ii) If S is symmetric then eigenvectors corresponding to distinct 

eigenvalues are orthogonal because if Sxi = ixi and Sxj = jxj 

then xjSxi = ixjxi and xiSxj = jxixj but xjSxi = (xjSxi) because 

it is a scalar (see §1.9.2.1) (xjSxi) = xiSxj = xiSxj (see 

§1.12.3.5 and noting S is symmetric), so (i – j)xixj (noting 

xixj = xjxi) and since i   j we have xixj = 0 and thus xi and xj 

are orthogonal. 
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5.4.2.1 Left and right eigenvectors of non-symmetric matrices 

(i) If xi is a right eigenvector of the nn matrix A with 

eigenvalue i then Axi = ixi  so xiA = ixi and so xi is a 

left eigenvector of A. Similarly, a right eigenvector yi of 

A is a left eigenvector of A.  

(ii) If xi and yj are left and right eigenvectors of A 

corresponding to distinct eigenvalues i and j then xi 

and yj are orthogonal because we have Axi = ixi and  

yjA = iyj. Pre-multiplying the first by yj and 

post-multiplying the second by xi and subtracting gives 

(i – j)yjxi = 0 and so yj and xi are orthogonal for i  j. 

The vectors xi and yi  can be standardized so that 

xiyi = 1 in which case the left and roiight eigenvectors 

are said to be biorthogonal.  Note that neither xi not 

the yj  are themselves orthogonal unless the matrix A is 

symmetric. 

5.4.2.2 Illustration of biorthogonality 

> X<-matrix(c(1,4,9,1),2,2,byrow=T) 
> X 
     [,1] [,2] 
[1,]    1    4 
[2,]    9    1 
> eigen(X) 
$values 
[1]  7 -5 
$vectors 
      [,1]   [,2] 
[1,] 0.555 -0.555 
[2,] 0.832  0.832 
 

> eigen(t(X)) 
$values 
[1]  7 -5 
$vectors 
      [,1]   [,2] 
[1,] 0.832 -0.832 
[2,] 0.555  0.555 
 

> t(eigen(X)$vectors[,1])%*%eigen(t(X))$vectors[,2] 
         [,1] 
[1,] -4.5e-17 
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5.4.3 Properties related to functions of matrices 

(i) If x and  are an eigenvector and an eigenvalue of S and if S is 

non-singular then X is an eigenvector of S–1 with eigenvalue –1 

since if Sx = x then S–1Sx = S–1x so S–1x = –1x shewing x is 

an eigenvector of S–1 with eigenvalue  –1. 

(ii) If x and  are an eigenvector and an eigenvalue of S then x is 

an eigenvector of Sk with eigenvalue k since  

Skx = Sk–1(Sx) = Sk–1(x) = … = kx. 

(iii) If x and  are an eigenvector and an eigenvalue of S then x and 

(a – b) are an eigenvector and eigenvalue of aIn – bS since 

(aIn – bS)x = ax – bx = (a – b)x. 

(iv) If S is nm and T is mn where n  m then ST and TS have the 

same non-zero eigenvalues.  The eigenvalues of ST are the 

roots of |ST – In| = 0 but |ST – In| = (–)n–m|TS – Im|, 

see §3.5.2(i).  Note that this implies that ST has at most n – m 

non-zero eigenvalues. 

(v) If x and  are an eigenvector and an eigenvalue of ST then Tx 

is an eigenvector of TS corresponding to eigenvalue  because 

we have STx = x so TS(Tx) = (Tx). 

(vi) If X is an mn matrix then XX and XX have the same non-zero 

eigenvalues. This follows directly from (iv) above. 

(vii) If x and  are an eigenvector and an eigenvalue of S and T is a 

non-singular nn matrix then  is an eigenvalue of TST–1 

corresponding to eigenvector Tx because if Sx = x  

then (TST–1)Tx = Tx. 
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5.4.4 Properties related to determinants 

(i) If S is diagonal [or triangular] then the eigenvalues are the 

diagonal elements since S – In is diagonal [or triangular] and 

the determinant of a diagonal [or triangular] matrix is the 

product of its diagonal elements (see §3.2.2) 

(ii) S is non-singular if and only if all of its eigenvalues are non-zero 

since 0 = |S – In| = |S| if  = 0 and if |S| = 0 then  = 0 satisfies 

|S – In| = 0 and so is an eigenvalue of S. 

(iii) If  is not an eigenvalue of S then S – In is non-singular since 

if |S – In| = 0 then  would be an eigenvalue of S. 

(iv) If S has eigenvalues 1, 2, …, n then 
n

ii 1
| S |


   because 

the i are the n roots of |S – In| = 0,   

so  |S – In| = (1
 – )(2

 – )…… (n
 – ) and putting  = 0 

gives the result. 

(v) If S has eigenvalues 1, 2, …, n then 
n

ii 1
, 

comparing the coefficients of n–1 in   

|S – In| = (1
 – )(2

 – )…… (n
 – ). 

tr(S)


 

(vi) If S has eigenvalues 1, 2, …, n then 
n
 which 

follows from (v) and §5.2.1.3(ii) 

k k
ii 1

tr(S )



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5.4.5 Properties related to diagonalisation 

(i) If X is an nn matrix with distinct eigenvalues 1 > 2 > … > n 

then there exists a non-singular matrix T and diagonal matrix  

such that T–1XT =  and the elements of  are the i:–     

If the eigenvectors of X are xi ,  i = 1, 2, …, n then Xxi
 = ixi 

  i = 1, 2, …, n  and if T = (x1, x2, …, xn) (i.e. the matrix composed 

of the n eigenvectors as columns) then T is non-singular since 

the eigenvectors are linearly independent. Further 

XT = (1x1, 2x2, …, nxn) = T where  = diag(1, 2, …, n) so, 

multiplying by T–1 we have T–1XT = . 

(ii) If X is an nn matrix with distinct eigenvalues 1 > 2 > … > n 

and Y commutes with X then T–1XT = M for some diagonal 

matrix M because if Xxi
 = ixi then YXxi

 = iYxi so X(Yxi)
 = i(Yxi) 

shewing that Yxi is another eigenvector of X corresponding to I 

but the I are distinct so Yxi must be a scalar multiple of xi, i.e. 

Yxi = ixi for some scalar i. Thus xi is an eigenvector of Y and 

thus XT = TM where M = diag(1, 2, …, n). 

(iii) If S is a symmetric matrix then there exists an orthogonal matrix 

T and a diagonal matrix  such that TST = .    

This result requires a substantial proof in the general case. In 

the case where the eigenvalues of S are distinct then it follows 

from (i) since by choosing the eigenvectors to be normalised to 

ensure xixi = 1 we can ensure T is orthogonal so T–1 = T.   

In the general case where there are some multiple eigenvalues 

(possibly some of which may be zero) we need to choose k 

orthogonal eigenvectors corresponding to an eigenvalue with 

multiplicity k. The most straightforward proof that this is possible 

is by induction and can be found in the references cited. 
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(iv) If S is a symmetric matrix then we can write S as TT = S 

where  is the diagonal matrix of eigenvalues of S and T is the 

matrix of eigenvectors. 

(v) If X and Y are both symmetric and if X and Y commute then 

result (ii) above can be generalised to there are diagonal 

matrices  and M and a matrix T such that TXT =  and 

TYT = M.  If we have TXT =  and TYT = M then 

XY = TTTMT = TMT = TMT = TMTTT = YX, noting 

diagonal matrices commute. The proof of the converse is more 

difficult and is not given here. In the particular case that the 

eigenvalues are distinct the result follows from arguments 

similar to that in (ii) noting that the eigenvectors in T can be 

chosen to be orthogonal.  
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5.4.6 Properties related to values of eigenvalues 

(i) (Upper & lower bounds for a Rayleigh quotient 
x Sx

x x




).  

   If S is an nn  symmetric  matrix  with  eigenvalues 

1  2  …  n and x is any vector then 1 n

x Sx

x x


    .  This 

follows by noting that xSx = xTTx = y’y = jjyj
2 , where 

y = Tx so 1jyj
2   xSx  njyj

2 and jyj
2 = yy = xTTx = xx 

since T is orthogonal.  
 



(ii) S is positive definite (i.e. S > 0) if and only if all the eigenvalues 

of S are strictly positive:    If all the i are positive then in 

particular n > 0 so  xSx  njyj
2 > 0 for any x and thus S > 0.  

Conversely, if S > 0 then xSx > 0 for any x. In particular we 

have Sxn = nxn so xSxn = nxnxn > 0 so n > 0 since xnxn > 0. 
 

(iii) S is positive semi-definite if and only if all the eigenvalues of S 

are non-negative.  The proof of this is similar to that in (ii) 

above. 
 

(iv) If S is positive definite then it is non-singular since its 

determinant (equal to the product of its eigenvalues) is strictly 

positive. 
 

(v) If S is positive semi-definite and non-singular then it must be 

positive definite since its determinant (equal to the product of its 

eigenvalues) is strictly positive and so all its eigenvalues must 

be strictly positive. 
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5.4.7 Rank and non-zero eigenvalues 

The rank of a symmetric matrix S is equal to the number of non-zero 

eigenvalues.   We have rk(TST) = rk() = number of non-zero diagonal 

elements of , noting §2.5.2.1 and §2.3(ii). 

Note that this result is not true in general for non-symmetric matrices. 
 

5.4.7.1 Example of non-symmetric matrix 

Consider the matrix  which has all eigenvalues 

equal to zero since it is a triangular matrix with all diagonal elements 

zero but it is clearly of rank n – 1 since the first n – 1 rows are linearly 

independent and the last row is entirely composed of zeroes. Matrices of 

this form are termed Jordan matrices. 

0 1 0 0

0 0 1

A 0 0 0

1

0 0 0 0

 
 
 

 
 
 
 


 

 
   





 

5.5 Decompositions 

5.5.1 Spectral decomposition of a symmetric matrix 

If S is a symmetric matrix with eigenvalues 1  2  …  n we have 

S = TT, with TT = In  (§5.4.5(iv)).  This is known as the spectral 

decomposition of S. It is often expressed in the form of a sum of rank 1 

matrices:  If T = (x1, x2, …, xn) then T = (1x1, 2x2, …, nxn) and so 

TT = jjxjxj. Each of the matrices xjxj  is of rank 1.  If there are r non-

zero eigenvalues (so r+1 =
 …… = n = 0) then the summation is over r 

terms. 
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5.5.1.1 Square root of positive semidefinite matrices 

If S  0 then all of its eigenvalues are non-negative, i.e. i  0 and also 

we have  S = TT, with TT = In and  = diag(1, 2, …,n). Define ½ by 

½ = diag(1
½, 2

½, …,n
½).  Then let S½ = T½T and (S½)2 = T½TT½T 

= T½½T = TT = S and so S½ is a square root of S.  Note that there 

are many other matrices Q such that Q2 = S but S½ is the only one such 

that T is orthogonal. Other [positive] powers of S can be defined 

similarly.  If S is positive definite then negative powers can also be 

defined in a similar way. 

 

5.5.2 Singular value decomposition (svd) of an mn matrix 

If A is an mn matrix with rk(A) = r [  min{m, n}] then there are 

orthogonal matrices U and V and a diagonal matrix  such that 

A = U½V.  The elements ½ are called the singular values of the 

matrix A.   

 

5.5.2.1 Proof of svd 

To prove this first note that AA and AA are both positive semidefinite 

since xAAx = (Ax)(Ax)  0 (likewise AA) and they have the same non-

zero eigenvalues, see §5.4.2.(iv), 1, 2, …,r say. If we define U to be 

the mr matrix of eigenvectors of AA corresponding to the non-zero 

eigenvalues, so AAU = U  and the mr matrix U2 to be chosen so that 

it is orthogonal and AAU2 = O, i.e. the columns of U2 corresponds to the 

zero eigenvalues of AA, then UU + U2U2 = Im.   

Define V = AU–½ . Then we have AAV = V and V V = Ir.  

Since AAU2 = O we must have AU2 = O, see 1.13.1(b),  

so A = ImA = (UU + U2U2)A = UUA = UIrUA = U½–½UA = U½V. 
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5.5.2.2 Note 

Note that U and V are eigenvectors of AA and AA, each with 

eigenvalues . 

 

5.5.3 Implementation of svd in R 

The command for producing the singular value decomposition of a 

matrix is svd().  

 

5.5.3.1 Examples 

> options(digits=3)  

A symmetric matrix:– 

> S<-matrix(c(2,1,1,1,2,1,1,1,3)  
                ,3,3) 
> S 
     [,1] [,2] [,3] 
[1,]    2    1    1 
[2,]    1    2    1 
[3,]    1    1    3 
> eigen(S) 
$values 
[1] 4.41 1.59 1.00 
 
$vectors 
       [,1]   [,2]   [,3] 
[1,] -0.500 -0.500  0.707 
[2,] -0.500 -0.500 -0.707 
[3,] -0.707  0.707    0 
 
> svd(S) 
$d 
[1] 4.41 1.59 1.00 
 
$u 
       [,1]   [,2]      [,3] 
[1,] -0.500  0.500  0.707 
[2,] -0.500  0.500 -0.707 
[3,] -0.707 -0.707    0 
 
$v 
       [,1]   [,2]   [,3] 
[1,] -0.500  0.500  0.707 
[2,] -0.500  0.500 -0.707 
[3,] -0.707 -0.707    0 
 

> eigen(S%*%t(S)) 
$values 
[1] 19.49  2.51  1.00 
 
$vectors 
       [,1]   [,2]   [,3] 
[1,] -0.500  0.500  0.707 
[2,] -0.500  0.500 -0.707 
[3,] -0.707 -0.707    0 
 
> eigen(t(S)%*%S) 
$values 
[1] 19.49  2.51  1.00 
 
$vectors 
       [,1]   [,2]   [,3] 
[1,] -0.500  0.500  0.707 
[2,] -0.500  0.500 -0.707 
[3,] -0.707 -0.707    0 
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A nonsymmetric matrix:– 

> A<-matrix(c(2,1,1,1,2,1,4,2,3), 
                    3,3) 
> A 
     [,1] [,2] [,3] 
[1,]    2    1    4 
[2,]    1    2    2 
[3,]    1    1    3 
> eigen(A) 
$values 
[1] 5.45 1.00 0.55 
 
$vectors 
      [,1]   [,2]   [,3] 
[1,] 0.716  0.707 -0.925 
[2,] 0.494 -0.707  0.268 
[3,] 0.494    0    0.268 
 
> svd(A) 
$d 
[1] 6.265 1.269 0.377 
 
$u 
       [,1]   [,2]   [,3] 
[1,] -0.725  0.458 -0.514 
[2,] -0.444 -0.882 -0.160 
[3,] -0.526  0.113  0.843 
 
$v 
       [,1]   [,2]    [,3] 
[1,] -0.386  0.117 -0.9149 
[2,] -0.342 -0.940  0.0245 
[3,] -0.857  0.322  0.4028 
 

> eigen(A%*%t(A)) 
$values 
[1] 39.248  1.610  0.142 
 
$vectors 
       [,1]   [,2]   [,3] 
[1,] -0.725  0.458  0.514 
[2,] -0.444 -0.882  0.160 
[3,] -0.526  0.113 -0.843 
 
> eigen(t(A)%*%A) 
$values 
[1] 39.248  1.610  0.142 
 
$vectors 
       [,1]   [,2]    [,3] 
[1,] -0.386  0.117  0.9149 
[2,] -0.342 -0.940 -0.0245 
[3,] -0.857  0.322 -0.4028 
 
 

 
A nonssquare matrix:– 
> B<-matrix(c(1,2,3,4,5,6),2,3) 
> B 
     [,1] [,2] [,3] 
[1,]    1    3    5 
[2,]    2    4    6 
> svd(B) 
$d 
[1] 9.526 0.514 
 
$u 
       [,1]   [,2] 
[1,] -0.620 -0.785 
[2,] -0.785  0.620 
 
$v 
       [,1]   [,2] 
[1,] -0.230  0.883 
[2,] -0.525  0.241 
[3,] -0.820 -0.402 
 

> eigen(B%*%t(B)) 
$values 
[1] 90.735  0.265 
 
$vectors 
      [,1]   [,2] 
[1,] 0.620 -0.785 
[2,] 0.785  0.620 
 
> eigen(t(B)%*%B) 
$values 
[1]  9.07e+01  2.65e-01 0 
 
$vectors 
       [,1]   [,2]   [,3] 
[1,] -0.230  0.883  0.408 
[2,] -0.525  0.241 -0.816 
[3,] -0.820 -0.402  0.408 
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A Jordan matrix:– 
> j<-matrix(c(0,1,0,0,0,1,0,0,0),3,3) 
> j 
     [,1] [,2] [,3] 
[1,]    0    0    0 
[2,]    1    0    0 
[3,]    0    1    0 
> eigen(j) 
$values 
[1] 0 0 0 
 
$vectors 
     [,1]  [,2] [,3] 
[1,]    0    0    0 
[2,]    0    0    0 
[3,]    1   -1    0 
 

> svd(j) 
$d 
[1] 1 1 0 
 
$u 
     [,1] [,2] [,3] 
[1,]    0    0    1 
[2,]    0   -1    0 
[3,]   -1    0    0 
 
$v 
     [,1] [,2] [,3] 
[1,]    0   -1    0 
[2,]   -1    0    0 
[3,]    0    0    1 
 
> 
 

  
 
 
 

5.6 Eigenanlysis of matrices with special structures 

To show that a vector x and scalar  are an eigenvector and eigenvalue 

of a matrix it is only necessary to demonstrate that Ax = x. Sometimes 

the matrix A has a particular structure that can be manipulated, perhaps 

using the ‘useful tricks’ indicated in §1.9.2.  Sometimes this may be 

deceptively simple and not obvious without experience.  Particular 

results relate to rank 1 matrices and matrices composed as the sum of a 

rank 1 matrix with a scalar multiple of the identity matrix. 

 

5.6.1 The rank one matrix xx 

If x is a vector of length n then xx is an nn matrix of rank 1 (since 

rk(xx) < min{rk(x), rk(x)} = 1).   We have xxx = x(xx) = (xx)x, noting 

that (xx) is a scalar and so commutes with the vector x.  This is in the 

form Ax = x with A = xx and  = (xx) and so x is an eigenvector of xx 

with eigenvalue (xx).  Since xx is symmetric and of rank 1 it has only 

one non-zero eigenvalue. 
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5.6.2 The rank one matrix Sxx 

If x is a vector of length n then Sxx is an nn matrix of rank 1 (since 

rk(xx) < min{rk(S), rk(xx)} = 1). We have SxxSx = Sx(xSx) = (xSx)Sx, 

noting that (xSx) is a scalar and so commutes with the vector Sx. This is 

in the form Ax = x with A = Sxx and  = (xSx) and so Sx is an 

eigenvector of Sxx with eigenvalue (xSx). Note that Sxx has only one 

non-zero eigenvalue since it is symmetric and of rank 1. 

 

5.6.2 The matrix aIn + bxy 

(aIn + bxy)x = aInx + bxyx = ax + b(yx)x (noting that yx is a scalar and 

so commutes with x).  Thus (aIn + bxy)x = (a + byx)x and thus x is an 

eigenvector of aIn + bxy with eigenvalue (a + byx).  The rank of aIn + bxy 

is not in general 1 (e.g. consider a = 1 and b = 0) and so will in general 

have other non-zero eigenvalues and corresponding non-trivial 

eigenvectors.  

To find the other eigenvalues consider |aIn + bxy – In|
 = |(a – )In + bxy| 

= (a – )n|In + bxy/(a – )| = (a – )n|1 + byx/(a – )| , see §3.5.2(iii) 

= (a – )n–1(a + byx – ) and so the other eigenvalues are a with 

multiplicity n –1.  Note that if x = y and a  0 and a + byx  0 then the 

matrix is symmetric with n non-zero eigenvalues and so is of full rank 

and thus non-singular. 
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5.7 Summary 

If A is a real nn matrix.  

The eigenvalues of A are the roots of the n-degree polynomial in : 

    q()= det(A – In)=0................................... 

Let these be 1,2,......n. Then, since the coefficient of n in equation  is 

(–1)n we have 
n

i
i 1

q( ) ( )


     .................. 

1.  Comparing coefficients of n-1 in  and  gives 

   
n n

i i
i 1 i 1

trace(A) a
 

   i   

2.  Putting =0 in  and  gives 

   = |A| 

 Since the matrices A – iIn are singular (i.e. have zero determinant) 

there exist vectors xi called the eigenvectors of A such that 

    (A – iIn)xi = 0, i.e. Axi – ixi = 0. 

 [Strictly, if A is non-symmetric, the xi are right-eigenvectors and we 

can define left-eigenvectors yi such that yiA – iyi = 0] 

n

i
i 1

det(A)


 

3.  Suppose C is any nn non-singular square matrix, since  

|A – In| = |C||A – In||C
-1| = |CAC-1 – In| we have: 

 A and CAC-1 have the same eigenvalues. 

4.  If Axi=ixi then (CAC-1)(Cxi)=i(Cxi) so the eigenvectors of CAC-1 are 

Cxi 

5.  If A is nm and B is pn then 

 |AB – In|= (-)n–m|BA – Im| so the non-zero eigenvalues of AB and 

BA are identical. 

6.  Since, if ABxi = xi then (BA)(Bxi) = (Bxi), we have that the 

eigenvectors of BA are obtained by premultiplying those of AB by B. 
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7.  Suppose now that A is symmetrical, i.e. A = A, we can show that the 

eigenvalues of A are real, since suppose i and xi are the eigenvalues 

and vectors and that j = j+ij, xj = yj+izj then equating real and 

imaginary parts of Axj = jxj gives  

Ayj = jyj – jzj ......... and Az j= jyj+jzj ............. 

Premultiplying  by zj and  by yj and noting zjAyj = (zjAyj) 

(since it’s a scalar) = yjAj = yjAzj (since A is symmetric by 

presumption) and subtracting the two equations gives the result. 

8.  Suppose again A is symmetric and that j and k are distinct 

eigenvalues with corresponding eigenvectors xj and xk. Then Axj = jxj 

and Axk = kxk. Premultiplying these by xk and xj respectively and 

noting that xjAxk = xkAxj since A is symmetric gives  

(j – k)xjxk = 0; since j  k (by presumption) gives xjxk = 0, 

 i.e. eigenvectors with distinct eigenvalues are orthogonal. 
 

5.7.1 Summary of key results 

nn matrix A with eigenvalues 1,...,n and [right] eigenvectors x1,...,xn 

then 

1.  
n

i
i 1

trace(A)


 
5. AB and BA have identical non-
zero eigenvalues. 

2.  
n

i
i 1

det | A |


  6. Eigenvectors of BA = B  those 
of AB 

3. A and CAC-1 have identical 
eigenvectors for C non-singular 

7. A symmetric  eigenvalues 
real 

4. Eigenvalues of CAC-1 are Cxi 8. A symmetric  eigenvectors 
corresponding to distinct 
eigenvalues are orthogonal. 
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5.8 Exercises 5 

 

1.  

2. Find the eigenvalues of 

1

1

X

1

   
    
 
 
  
    




    




 

3.  

 

. 111  
 



NRJF, University of Sheffield, 2010/2011. Basics of Matrix Algebra with R: 6 Vector & Matrix Calculus  

 

. 112  
 

6 Vector and Matrix Calculus 

6.1 Introduction 

This section considers various simple cases of differentiation of scalar-

valued, vector-valued and matrix-valued functions of scalars, vectors 

and matrices with respect to scalars, vectors and matrices. For example, 

the quadratic form xAx is a scalar function of a vector x, xx is a matrix 

function of a vector x, tr(X) and |X| are scalar functions of a matrix X, Ax 

is a vector function of a vector x.  Not all combinations of these will be 

covered here.  

Broadly, the procedure consists of [partially] differentiating each element 

of the function with respect to each element of the arguments and 

arranging the results in a vector or matrix as appropriate.  We use 

‘partial differentiation’ if the argument is not a scalar; this is equivalent to 

differentiation with respect to the individual elements.  Thus the result of 

differentiating a scalar with respect to a vector [matrix] will consist of the 

vector [matrix] of partial derivatives of the scalar with respect to the 

elements of the vector [matrix].  Differentiating a vector-valued function 

of a vector argument with respect to another vector will result in a matrix 

where the individual elements are the partial derivatives of each element 

of the function with respect to each element of the vector argument. 

Generally, differentiating an mn matrix with respect to a pq matrix can 

be defined and will result in a matrix of dimension mpnq.  We consider 

only the cases where not only is one of m and p equal to 1 but also one 

of n and q equals 1. Other cases can be handled with the use of 

Kronecker products.  This is beyond the scope of these notes. 
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Most of the basic results can be obtained by expressing the functions of 

the vectors in terms of the individual elements and expanding, for 

example, inner products of vectors as sums of products of individual 

elements.  It may help understanding to write out explicitly the cases 

n = 1 and n = 2.   Many of the basic rules of scalar calculus of single 

variables (e.g. differentiation of products etc) carry through recognisably 

to the vector and matrix cases. 

 

6.2 Differentiation of a scalar with respect to a vector 

If x is a vector of length n and f = f(x) is a scalar function of x then 
f

x




 is 

defined to be the vector 

1

2

n

f
x

f
x

f
x

f

x










 
 

      
 
 


. 

6.2.1 Derivative of ax 

f(x) = ax = jajxj so j j j( a x )f  
i

i i

a
x x
 

 
, so 

1

2

n

a

af (a x)
a

x x

a

 
      
  
 
 


. 

6.2.2 Derivative of xx 

f(x) =xx = jxj
2 so 

2
j j( x )f  

i
i i

2x
x x
 

 
, so 

1

2

n

2x

2xf (x x)
2x

x x

2x

 
      
  
 
 


. 
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6.2.3 Derivative of quadratic forms xSx 

We can, without loss of generality, take S to be symmetric (see §1.10). 

First consider special cases of n = 1 and n = 2: 

Case n = 1: i.e. x = (x1), S = (s11), f(x) = x1s11x1 =  x s1
2

11

  


f
x = 2s11x1 = 2Sx 

Case n = 2: i.e. x = (x1,x2), S = , 
s s

s s
11 12

12 22









  then xSx =  x s x x s x s1
2

11 1 2 12 2
2

222 

 
1 2

f f f
x x x( ,  
    )  = ((2x1s11+2x2s12), (2x1s12+2x2s22)) = 2Sx. 

 

General case:  f(x) = xSx = kjxkskjxj = kj, jk xkskjxj + jsjjxj
2 , 

so 
2

k j,j k k kj j j jj j
j,j i ij j k,k i ik k ii i

i i

( x s x s x )f
1 s x ( s x ) 1 2s

x x


 

    
     

 
x   

ii i j,j i ij j k,k i ik k ii is x s x ( s x s x )       = 2Sx 

Noting §1.10, clearly if A is not symmetric then the derivative of xAx is 

(A+A)x. 
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6.3 Differentiation of a scalar with respect to a matrix 

If X is an mn matrix (xij) and f = f(X) is a scalar valued function of X then 

f

X




 is defined to be the matrix  

  

11 12 1n

21 22 2n

m1 m2 mn

f f f
x x x

f f f
x x x

ij

f f f
x x x

f f

X x

  
  

  
  

  
  

 
 

            
 
 





   


.   

Special care needs to be taken with this definition since the xij may not 

be functionally independent. For example, if the matrix X is symmetric so 

that xij =
 xji then 

ij

f

x

 
  

  may be different from the value obtained in the 

non-symmetric case.  Symmetry is the most common situation in 

statistical applications where this arises but skew-symmetric matrices 

and also matrices of other special structures (diagonal, triangular, 

banded etc) need careful handling. In the cases considered below it is to 

be understood that there is no other functional relationship between the 

elements other than symmetry where that case is declared. 

 

6.3.1 Derivative of tr(X) 

If X is nn then tr(X) = kxkk so 
ij

f
0

x

 
   

 if i  j and = 1 if i = j. 

Thus n

f
I

X

    
 

. 115  
 



NRJF, University of Sheffield, 2010/2011. Basics of Matrix Algebra with R: 6 Vector & Matrix Calculus  

 

6.3.2 Derivative of aXa when X is not symmetric 

If X is an nn matrix and a is a vector of length n then aXa = ijaiajxij 

so, assuming xij  xji, i j
ij

(a Xa)
aa

x





. 

Thus 
(a Xa)

aa
X

 


 provided X is not symmetric. 

 

6.3.3 Derivative of aXa when X is symmetric 

If X is a symmetric nn matrix and a is a vector of length n then 

,  
n i 1 n 2

i j ij i iji 1 j 1 i 1
a Xa 2 aa x a x



  
    

so i j
ij

(a Xa)
2aa

x





 (if i  j)  and  2

i
ii

(a Xa)
a

x





 (if i = j). 

Thus 
(a Xa)

2aa diag(aa )
X

  


  if X is symmetric. 

 

6.3.4 Derivative of tr(XA) when X is not symmetric 

If X and A are nn matrices then tr(XA) = ijxijaji so ji
ij

tr(XA)
a

x





 and 

thus 
tr(XA)

A
X

 


 provided X is not symmetric. 

 

6.3.5 Derivative of tr(XA) when X is symmetric 

If X and A are nn matrices then   
n i 1 n 2

ij ij ji ii iii 1 j 1 i 1
tr(XA) x (a a ) x a



  
    

so ij ji
ij

tr(XA)
a a

x


 


  (if i  j)  and ii

ii

tr(XA)
a

x





 (if i = j). 

 and thus 
tr(XA)

A A diag(A
X

   


) if X is symmetric. 
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6.3.6 Derivative of tr(AXA) 

If X and A are mn matrices then AXA id mm.   

Since tr(AXA) = tr(XAA) (see §1.6) and since AA is symmetric we have  

tr(A XA)
2AA diag(AA ) or AA

X

   


  according as X is symmetric or 

non-symmetric (by §6.3.4 and §6.3.5). 

 

6.3.7 Derivative of |X| when X is not symmetric 

If X is nn and f = f(X) = |X| then 1f
| X | (X )

X
 


 

First consider the case  n = 2:  X = (xij), f(X) = |X| = x11x22 – x12x21.  

So 22 21 1

12 11

x xf
| X | (X )

x xX
      

 

 

6.3.7.1 General proof of derivative of |X| when X is not symmetric 

Generally we have 
n

jk jkj 1
| X | x c


  for any row k where cjk is the cofactor 

of xjk, see §3.1.1, so ij
ij

f
c

x





 and thus #

ij

f
(c ) (X )

X

  


 where X# is the 

adjoint matrix of X.  Since X–1 = |X|–1X# (see §4.7+) we have X#
 =

 |X|(X–1) 

and thus 1) f
| X | (X

X





. 
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6.3.8 Derivative of |X| when X is symmetric 

If X is nn  and f = f(X) = |X| then 1f
| X | (X )

X
 


 

First consider the case  n = 2:  X = (xij), f(X) = |X| = x11x22 – x
2
12.  

So 22 12 1 1

12 11

x 2xf
| X | {2X diag(X )}

2x xX
  

     
 

 

6.3.8.1 General proof of derivative of |X| when X is symmetric 

Generally we have 
n

jk jkj 1
| X | x c


  for any row k where cjk is the cofactor 

of xjk, see §3.1.1, so ij ii
ij

f
2c for i j, and c for i j.

x


 


   

Thus #
ij ii

f
2(c ) diag(c ) 2X diag((X )

X


   


#  where X# is the adjoint 

matrix of X.  Since X–1 = |X|–1X# (see §4.7+) we have X#
 =

 |X|(X–1) and 

thus 1 1f
| X | {2X diag(X )}

X
 

 


. 

 

6.3.9 Derivative of |X|r 

If f = f(X) = |X|r then r 1 r 1 1 r 1f f
r | X | r | X | | X | (X ) r | X | (X )

X X
       

 
 , 

provided X is not symmetric.  

When X is symmetric then clearly r 1 1f
| X | {2X diag(X )}

X
 

 

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6.3.10 Derivative of log(|X|) 

If f = f(X) = log(|X|) then 1 1 1f f
r | X | | X | | X | (X ) (X )

X X
   1     

 
, 

provided X is not symmetric.  

When X is symmetric then clearly 1 1f
2X diag(X )

X
 

 


 

 

6.4 Differentiation of a vector with respect to a vector 

If x is a vector of length n and f = f(x) is a vector function of length m 

then 
f

x




 is defined to be the mn matrix  

  

1 1 1

1 2 n

2 2 2

1 2 n

m m m

1 2 n

f f f
x x x

f f f
x x x i

j

f f f
x x x

f f

x x

  
  

  
  

  
  

 
 

   
         
 
 





   


 

 
 

6.4.1 Derivative of Ax 

If A is mn then f = f(x) = Ax = (ja1jxj, ja2jxj, …, jamjxj), 

so 

1 1 1

1 2 n

2 2 2

1 2 n

m m m

1 2 n

f f f
x x x 11 12 1n
f f f

21 22 2nx x x

f f f
m1 m2 mnx x x

a a a

a a af
A

x

a a a

  
  

  
  

  
  

                     

 
 

      


  
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6.5 Differentiation of a matrix with respect to a scalar 

If the elements of a mn matrix A are functions of a scalar x, i.e. 

A = (aij) = (aij(x)) ,then the derivative with respect to x is simply the matrix 

of derivatives of cij(x) with respect to x.   

 

6.5.1 Example A = (1, x, x2, x3, …, xn–1) 

If A = (1, x, x2, x3, …, xn–1)then the derivative of A(x) with respect to x is 

(0, 1, 2x, 3x2, …, (n–1)xn–2). 

 

6.5.2 Autocorrelation matrix 

If  then 

2 n

2

2 2

n 1 2

1 x x x

x 1 x x

A(x) x x x

x

x x x





 
 
 
 
 
 
 
 





   



1

1

n 2

n 2

0 1 x x

1 0 1 x
A

x 1 x
x

1

x x 1





 
 
   

  
 
 
 





   

 0
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6.6 Application to optimisation problems 
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6.7 Exercises 6 

1.  

2. if x = (x1, x2, …,xn) and D = diag(x) find 
tr(D)

x




. 

3. If A, B and X are mn matrices find 
tr(A XB)

X




 

4.  
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APPENDICES 

These are bits from the Appendices in the course 

booklet for Multivariate Data Analysis.  Later chapters 

of these notes will provide material directed towards 

these results, including rank, determinant and inverse 

of matrices. 
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APPENDIX 0: Background Results 

A0.3 Lagrange Multipliers 

Suppose x=(x1,...,xn). To maximize/minimize f(x) (a scalar function of x) 

subject to k scalar constraints g1(x)=0, g2(x)=0,...,gk(x)=0 where k<n we 

define  and max/minimize  with respect to the n+k 

variables x1,...,xn, 1,...,k . 

   


f x g xj j
j

( ) ( )
1

k

Proof: Omitted, other than ‘by example’. 

e.g. (1): x=(x1,x2), f(x)=xx= ; 1 constraint x1+x2=1. x x1
2

2
2

i.e. minimize  subject to x1+x2=1. x x1
2

2
2

Let   =  +( x1+x2 –1),  x x1
2

2
2





x ii

x i x x     2 12 1 2( , ), 1  . Setting these derivatives to 

zero yields x1=–/2, x2=–/2, x1+x2 =1, so =–1 and solution is  x1opt =+½ 

CHECK: Substitute for x2: x2=1–x1, f(x)=  + (1 – x1)
2
, x1

2




f
x1

 = 2x1 – 2(1 – x1) and so x1opt = +½ (= x2opt). 

e.g.  (2): Suppose t1,...,tn are unbiased estimates of  with variances 

 : to find the best linear unbiased estimate of . Let =iti. We 

want to choose the i so that  has minimum variance subject to the 

constraint of being unbiased. Now E[ti]= all i, so E[]=, so we have the 

constraint i=1. Also var()=i
2 var(ti)= i

2i
2. Let =i

2i
2 +(i –1): 

 1
2,..., n

2





  

i i i i  2 12 :   .  
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 


2
i2

1

1
So i=–½/i

2, so ½/I
2=–1, so  and so 


 i

i i
 




1 1
2 2

1

and the BLUE estimate of  is 
 

 
 








t i

i

i

2

2
1
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> S<-matrix(c(2,1,1,1,2,1,1,1,3),3,3) 
> S 
     [,1] [,2] [,3] 
[1,]    2    1    1 
[2,]    1    2    1 
[3,]    1    1    3 
> eigen(S) 
$values 
[1] 4.414214 1.585786 1.000000 
 
$vectors 
           [,1]       [,2]          [,3] 
[1,] -0.5000000 -0.5000000  7.071068e-01 
[2,] -0.5000000 -0.5000000 -7.071068e-01 
[3,] -0.7071068  0.7071068 -2.395816e-16 
 
> svd(S) 
$d 
[1] 4.414214 1.585786 1.000000 
 
$u 
           [,1]       [,2]          [,3] 
[1,] -0.5000000  0.5000000  7.071068e-01 
[2,] -0.5000000  0.5000000 -7.071068e-01 
[3,] -0.7071068 -0.7071068 -4.297520e-15 
 
$v 
           [,1]       [,2]          [,3] 
[1,] -0.5000000  0.5000000  7.071068e-01 
[2,] -0.5000000  0.5000000 -7.071068e-01 
[3,] -0.7071068 -0.7071068 -7.090953e-15 
eigen(t(S)%*%S) 
$values 
[1] 19.485281  2.514719  1.000000 
 
$vectors 
           [,1]       [,2]          [,3] 
[1,] -0.5000000  0.5000000  7.071068e-01 
[2,] -0.5000000  0.5000000 -7.071068e-01 
[3,] -0.7071068 -0.7071068 -2.479028e-16 
 
> S<-matrix(c(2,1,1,1,2,1,4,2,3),3,3) 
> S 
     [,1] [,2] [,3] 
[1,]    2    1    4 
[2,]    1    2    2 
[3,]    1    1    3 
> eigen(S) 
$values 
[1] 5.4494897 1.0000000 0.5505103 
 
$vectors 
          [,1]          [,2]       [,3] 
[1,] 0.7157629  7.071068e-01 -0.9252592 
[2,] 0.4938033 -7.071068e-01  0.2682307 
[3,] 0.4938033  1.187949e-16  0.2682307 
 
> svd(S) 
$d 
[1] 6.2648050 1.2687663 0.3774262 
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$u 
           [,1]       [,2]       [,3] 
[1,] -0.7249031  0.4583831 -0.5141989 
[2,] -0.4442335 -0.8815778 -0.1596155 
[3,] -0.5264714  0.1127186  0.8426876 
 
$v 
           [,1]       [,2]        [,3] 
[1,] -0.3863665  0.1165754 -0.91494867 
[2,] -0.3415655 -0.9395378  0.02452866 
[3,] -0.8567694  0.3219920  0.40282413 
 
> eigen(t(S)%*%S) 
$values 
[1] 39.2477815  1.6097679  0.1424505 
 
$vectors 
           [,1]       [,2]        [,3] 
[1,] -0.3863665  0.1165754  0.91494867 
[2,] -0.3415655 -0.9395378 -0.02452866 
[3,] -0.8567694  0.3219920 -0.40282413 
 
 
 
 

 




